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Preface

In the process of selling a product or service, firms usually consider various
components of the marketing mix and value proposition to influence consumers’
purchase behaviors, such as product design, advertising, delivery and convenience,
pricing, and promotions. This mix varies depending on consumer characteristics
in the market that the firm is targeting, the specific distribution channel(s) and
related strategy, the level of product information disclosure, or firms’ environmental
concerns. Keeping in mind the growing digitalization of business processes in the
retail world and the move towards omni-channel retailing, this book aims to revisit
the “traditional” interactions between channel strategies and the marketing mix
in a connected world. By collecting state-of-the-art academic studies along these
dimensions, this book would enhance our understanding of the potential impact
that the new technologies and strategies can have on practice in the near future. In
particular, we divide the chapters in the books along how digitilization of the retail
channel affects the following three aspects: consumers, products, and sustainability.

1. Consumers represent the demand side of the value chain. Consumer charac-
teristics and especially their behaviors in the Internet era shape how products
or services should be distributed, how prices should be set, and how market
uncertainty is formed, etc. Therefore, when firms consider different channel
strategies, it is important to have a proper understanding of a “modern” con-
sumer’s decision-making process and his/her utility function. This might involve
their impulsiveness or patience when making purchase decisions, their price-
sensitivity, how willing they are to collaborate for consumption purposes, how
they react to environmental cues, how sensitive they are to health or environmen-
tal concerns, etc. Subsequently, firms should take this understanding into account

Chapter 1 demonstrates that demand of a particular product may be uncertain
and hard to predict, especially when there are competing brands in the market.
Failure to correct the errors in demand estimation may create biases which
could further lead to miscalculation of operational decisions such as stocking

v

when constructing their value chains and make their decisions accordingly. The
first three chapters (Chapters 1–3) of this book focuses on consumers.
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levels. The uncertain demand could be caused by a new innovative product for
which consumers are unsure about the utility to be gained from consuming the
product. Given such a product, Chapter 2 analyzes firms’ optimal promotion and
pricing strategies when consumers’ anxiety can be mitigated by learning from
experiences of early adopters of this product. Chapter 3 also discusses a number
of instruments that firms may adopt to disclose product information to consumers
so as to reduce uncertainty in consumers’ valuation of a certain product and hence
to increase the benefit they can obtain from it. These discussions indicate that
understanding consumers’ psychological dimension when they are considering
purchasing a product can help firms improve their operational decisions and
distribution channel strategies.

2. Products are the core to success for any business and represent the supply side of
the value chain. Given a product type, its value proposition is affected by various
pricing, promotion, and advertising strategies that firms in a channel might use
to influence consumers’ purchasing decisions. Building on some of the strategies
examined in Chapters 2 and 3, the book presents five chapters (Chapters 4–
8) that address how these strategies need to be modified when consumers are
“connected” via various media.

Chapter 4 studies promotion planning for supermarket retailers that sell a
large number of different items whose sales are interrelated cross-sectionally due
to their complementarity or substitutability and also longitudinally across time
periods due to consumers’ stockpiling behavior caused by promotions. Chapter 5
provides a different perspective on the topic of advertising. It specifically reviews
the academic work on how the promotion or advertising strategies can be
implemented online, given the rapid explosion of the digital advertising industry.
The Internet era also leads to the prevalence of e-commerce, which provides
retailers an additional vehicle to reach out to their consumers. Chapter 6 focuses
on the omni-channel retailing strategy that retailers adopt to sell their goods to
consumers through both online and offline channels, taking into consideration
consumer behavior in the digital era. This chapter shows that the omni-channel
strategy can help mitigate two key problems in retailing: stockouts and product
misfit. Subsequently, Chapter 7 explores the adoption of on-demand customiza-
tion technology (such as additive manufacturing or 3D printing) in retailing and
studies its impact on the online and offline distribution channels in terms of the
product variety offered and the pricing strategies. In addition to the impact of new
technologies on retail channels, Chapter 8 focuses on price matching strategies
offered by competing retailers to price-sensitive consumers, where the online
information search has made it much easier for consumers to compare prices
charged by competing sellers. This chapter examines how consumer behavior
and channel structure influence the effectiveness of such strategies.

3. Sustainability In addition to pricing, promotion, advertising, and distribution
convenience, there are other factors (mostly non-pricing) that also affects
consumer purchase behavior. Collaborative strategies among micro-retailers
in developing countries and the consideration of retail sustainability are
among them. The book uses the last two chapters (Chapters 9 and 10) to cover
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these topics. Chapter 9 explores the collaborative strategies that entities in
public or private sectors can take in order to help micro-retailers in developing
countries coordinate their inventory replenishment strategies and serve their
communities better. The study unveils several key trade-offs associated with
these collaborative strategies. Finally, starting with an overview of the most
common and significant environmental impacts of retail, Chapter 10 examines
the origin of sustainable planning and operations in retail, the business
case for sustainability programs, and the maturation of retail sustainability
programs. This chapter includes business-actionable steps for retail sustainability
practitioners and describes the critical programmatic components for a strong
retail sustainability program.

Chain Management. We also thank the following reviewers for their helpful and
constructive comments in the review process: George Cai, Rachel Chen, Nagesh
Gavirneni, Luyi Gui, Ho-Yin Mak, Arcan Nalca, Karthik Ramachandran, Nathan
Yang, John Turner, and Wei Qi.
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Chapter 1
Estimating Demand with Constrained
Data and Product Substitutions

Mark E. Ferguson

Abstract The inventory and revenue management models most commonly taught
in the operations management and industrial engineering disciplines typically
assume that the demand for a product is easily estimated and is independent of
competing products offered through the same channel. In this chapter, we show why
this is rarely a good assumption and provide a review of the statistical techniques
that have been developed to correct product demand distribution estimates that
are biased due to truncated demand or product substitution effects. Failure to
correct product demand estimates for these biases has been shown to result in
significantly missed opportunities in meeting customers’ true demand due to
incorrectly calculated optimal product stocking levels.

Keywords Demand estimation · Product substitutability · Consumer
preferences · Choice behavior

1.1 Introduction

Every organization that sells a physical product or service faces out-of-stock
events and, potentially, customer demand substitution effects. The impact of these
occurrences on the accuracy of a firm’s historical demand data is often called the
truncated demand problem, a problem that is prevalent across a wide range of
industries. Airlines and hotels, for example, deliberately ration the capacity made
available to lower-fare customers to protect their remaining capacity for the more
profitable, higher-fare customers. Often times, however, the capacity protected for
these customers is insufficient to serve all those who would like (and could afford)
to buy the ticket at that price. Hence, a portion of the customers that are willing
to buy at the previously provided price is frequently denied a reservation due to a
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2 M. E. Ferguson

lack of available capacity (at least at the previous price). While most retailers do not
intentionally remove their available merchandise from their store shelf or website,
they also face stock-out situations whenever demand exceeds their predetermined
stocking levels (typically set based on forecast demand plus some safety stock).
Consider, for example, what happens when a particular stock keeping unit (SKU)
of toothpaste, Tartar Control with Teeth Whitening Colgate toothpaste, at a Kroger
grocery store stocks out. While some customers who would otherwise purchase the
product and counted on it being available in the store will substitute for another
product type or brand, others will leave disappointedly and most likely purchase
their preferred product at a competing store.

The airline and toothpaste examples above are different in regard to how out-
of-stocks form and manifest but they also share some important similarities. First,
out-of-stocks (or sell-outs) sometimes lead to lost sales which erode the already
thin profit margins that many organizations face. Second, unless controlled for,
the out-of-stock/substitution events provide a distorted view of the demand for a
product that will often lead to biased forecasts for future demand and, subsequently,
suboptimal future performance of decisions that use historical demand data as an
input. Conlon and Mortimer (2013) describe a study involving the tracking of
inventory levels of the various products sold through campus vending machines
and record when products sold in the machines stock-out before a scheduled
replenishment takes place (typically every 4 h in their setting). These stock-out
events are not random, however, as they occur when the demand is higher than
normal. Conlon and Mortimer (2013) show that the average sales rate during a
period that includes stock-outs is nearly three times the sales rates of the periods that
did not include any stock-outs. To help demonstrate the intricacies and complexities
of the truncated demand problem, we begin with one of the most common and basic
inventory management problems—the newsvendor problem.

Practically every undergraduate student pursuing a degree in industrial engineer-
ing or business administration learns of the problem facing a newsvendor who must
decide how many newspapers to bring to their newsstand each morning, without
knowing a priori exactly what the demand for the newspapers will be for that day.
We are taught, in this problem, that the newsvendor should first fit a distribution to
her historical demand data for newspapers, recorded over many days of operating
the newsstand and documenting the cumulative demand at the end of each day. The
newsvendor should then choose the amount of newspapers to order for an upcoming
day by calculating a critical fractile ((cost of being under demand)/(cost of being
under plus the cost of being over)), which is always some number between 0% and
100%, and choosing the order quantity that represents that fractile in the cumulative
demand distribution mentioned before.

There is a reason the newsvendor problem is taught in practically every under-
graduate operations management class. Since unsold newspapers become worthless
at the end of each day, this problem presents a clean and easy-to-visualize example
of one of the main trade-offs found in stochastic inventory management theory, i.e.,
the cost of balancing an unequal marginal cost of ordering too many units versus
ordering too few. What is rarely discussed about this problem, however, is the more
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fundamental issue of how the newsvendor is supposed to estimate her distribution
of demand that is required to make this calculation.

Let us give the newsvendor a name, call her Susan. Susan runs a newsstand on
a busy corner of town from 7 a.m. to 5 p.m. each day. She must purchase all the
newspapers that she plans on selling each day from the local newspaper’s printing
company by 6:30 a.m., and she does not have the opportunity to replenish her stock
during the day. On days where she sells all of her newspapers before 5 p.m., she
simply closes the stand and goes home early. Susan buys her newspapers for $0.25
each and sells them for $1 each. Thus, each unit of unmet demand costs Susan $0.75
in missed opportunity.

Suppose Susan purchases 100 newspapers at the beginning of each day. At
the end of the first day, she ends up with five unsold newspapers. At the end of
the second day, she ends up with no unsold newspapers. Since Susan has taken
an operations management class and learned about the newsvendor problem, she
dutifully records her sales each day and has the following observations of demand
after her first 10 days: [95, 100, 100, 92, 100, 88, 96, 100, 98, 100]. Notice that she
never observes sales of more than 100, which makes sense because she only has a
maximum of 100 newspapers to sell each day. This common problem of recording
sales data, rather than actual demand data, is known as “constrained” demand, since
the data is constrained by the maximum amount of inventory that was available to
sell.

So why is constrained demand data a problem? First, it distorts the estimated
demand distribution, resulting in a lower estimated mean and variance than those of
the true demand distribution. Since the “optimal” order quantity is calculated using
this estimated demand distribution, this means that the newsvendor equation will
result in a lower order quantity than what it should have been if the true demand
distribution was used to calculate it. While this is a bad outcome, it gets worse over
time because a lower order quantity means that any new estimates of the demand
distribution will also be truncated at this lower order quantity. Thus, the newsvendor
continues to update their estimate of the demand distribution using increasingly
truncated data and, thus, continues to calculate lower and lower values for the
optimal order quantity. This results in profits that continue to decrease over time,
diverging further from the theoretical maximum profit predicted by the newsvendor
model when the true demand distribution is known. If Susan continues along this
path, she will soon be out of business. This situation was definitely not discussed in
her operations management class.

So what can be done about this unfortunate situation? Theoretically, Susan
could stay in her newsstand until the end of each day and record the number of
customers that stopped by and asked for a paper, even on days when she had sold out
newspapers hours before her normal closing time. This would take a very dedicated
effort on Susan’s part but, at least theoretically, it is possible. One challenge with
directly observing constrained demand is that the customers who intended to buy
a newspaper may observe that there are none left and not even bother to stop by
the stand to inquire. Another challenge is that not every customer who stops by the
stand is willing to pay the price being asked for the newspaper; i.e., they may simply
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be comparison shopping the price at this newsstand versus another newsstand in
a different part of town. While it is relatively straightforward to distinguish the
true buyers from the mere shoppers when the stock is on hand, this task becomes
considerably more difficult when an item is out of stock. The problem of identifying
constrained demand becomes even more challenging in most realistic settings where
the retailer carries more than one type of product. In addition, while it is reasonably
straightforward to quantify the marginal cost of not having enough newspapers to
meet demand on a given day ($0.75), it becomes considerably more difficult to
estimate this cost when customers will sometimes substitute another product from
the same retailer. In this case, Susan does not lose the $0.75 newspaper profit margin
that she did in the single product case because some of those customers that wanted
to buy a newspaper (but found it out of stock) will switch to another product instead.

Now suppose that Susan decides to expand her portfolio of products and begins
offering a daily news magazine, in addition to the newspaper that she already offers.
The daily news magazine has some similar attributes to the newspaper that she
already sells. They both cover the local news from the previous day and cost a
similar amount. They also differ in some attributes because the newspaper covers
a wider variety of stories than the magazine, but the magazine includes more in-
depth coverage of the (fewer number of) topics in each issue. The magazine faces
the same ordering restriction as the newspaper—Susan must purchase a set number
of magazines at the beginning of each day and all unsold copies are disposed of (for
zero value) at the end of each day. Susan knows that this new offering should bring
in some new customers, who prefer the magazine to the newspaper. Because of the
overlap in some of the product attributes, however, she also expects that there will
be some existing customers who will switch from the newspaper to the magazine.
Thus, Susan changes her daily order quantity of newspapers down to 80 per day,
and decides to order 50 magazines each day. Recording her sales of (newspaper,
magazine) combinations over the next 5 days, Susan records the following: (74, 41),
(80, 48), (79, 50), (68, 38), and (80, 50).

Casually observing these sales numbers indicates that there appears to be a
positive correlation between the sales of newspapers and magazines—that is, when
the sales for one is high, then the sales for the other also appears to be high. There
are two potential explanations for this positive correlation. The first is that the “foot
traffic” of potential customers might be higher on certain days, so there are more
potential newspaper customers and potential magazine customers on some days
than on the other days. This certainly seems to be the case on the fifth day, when
both products sold out. We will use the term “arrival rate” to represent this overall
foot traffic of customers later in this chapter. A second explanation is that some
customers who preferred either a newspaper or a magazine may, upon finding their
preferred item out of stock, have switched to the remaining product that was still
in stock. Thus, on the second day, the “primary” demand for magazines may not
have been 48 because some of this demand may have come from customers who
wanted to purchase a newspaper but found that they were already sold out. The
same can be said for the demand for newspapers in week three since it appears that
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the magazines sold out before the end of that day. We will use the term “spillover”
demand to represent the observed demand that a product receives from customers
who purchased a product only because their first choice was not available at the time
of purchase. Compared to the earlier scenario, where Susan only sold newspapers,
determining what the primary demand is for newspapers and for magazines just got
considerably more complex.

As the example with Susan’s newsstand shows, just adding a second product to
a firm’s portfolio further complicates an already challenging problem. In fact, most
firms offer hundreds, thousands, or even hundreds of thousands of different products
in their portfolio, each of which most likely has correlated demand with a myriad
of other products within the same portfolio. At any particular point in time, some
of these products will be out of stock (or voluntarily withheld) from the market,
so that the primary demand for these unavailable products either goes away or is
spilled-over to other products that are still available. While complex, the situation
is not hopeless. There has been considerable progress made in how to estimate this
primary demand using statistical methods, although this science is still far from
being fully developed. In this chapter we review some of these methods, starting
with the problem of estimating demand when only a single product is offered and
concluding with the case where there is a portfolio of products. In Sect. 1.2, we begin
with the most straightforward case of a single product that faces no substitution from
other products. In Sect. 1.3, we extend our review to the case with two partially
substitutable products where one or both may incur out-of-stocks. In Sect. 1.4, we
extend further to the case with more than two partially substitutable products, any
of which may incur instances of being out-of-stock.

1.2 Estimating Demand for a Single Product with
Out-of-Stocks

We start with Susan’s original problem where she only sold newspapers at her
newsstand. The term commonly used for converting observed but “constrained”
sales data into an estimate of the true demand distribution for a product is called
“unconstraining.” In Susan’s original setting, she ends each day with either a positive
or zero inventory of newspapers. In order to accurately apply her newsvendor model
to determine how many newspapers she should purchase each morning, we need to
estimate a demand distribution using only the historical sales data that she recorded
each day. Thus, some of these sales amounts are constrained (typically the ones
where sales = 100) while others are not (the observations on days when the sales are
less than 100). While there is a number of techniques that can be used for the single
product problem, we will discuss the Expectation-Maximization method because
it is one of the more commonly used ones and because we will build upon this
method when we discuss the problem of unconstraining the demand for a portfolio
of products. For an alternative approach using Bayesian updating, see Mersereau
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(2015). For a more comprehensive review of the unconstraining research in the
revenue management field, see Guo et al. (2012).

1.2.1 Estimating Constrained Demand Using the
Expectation-Maximization Algorithm

The Expectation-Maximization (EM) algorithm (Dempster et al. 1977) is a
statistics-based technique which, for a variety of incomplete-data problems,
alternates between an expectation step and a maximum likelihood estimation step
until some given convergence criteria are met. The EM algorithm is used in many
different statistical applications, where, due to the existence of grouped, censored,
or truncated data, the estimation of the maximum likelihood parameters is made
difficult by the structure of the corresponding (log-) likelihood function. In such
cases, direct optimization over the incomplete-data (log-) likelihood function is
problematic for most distributions.

In general, the EM algorithm computes the maximum likelihood estimates for
an incomplete-data problem by formulating an associated complete-data problem
that is much simpler to solve. By iteratively revising the maximum likelihood
estimates for the simpler problem, the EM algorithm ultimately computes the
maximum likelihood estimates for the original incomplete-data problem. To get
a sense for what the EM algorithm does, we discuss it in a context of Susan’s
problem of estimating a demand distribution for her newspapers. We assume that
the demand for newspapers each day is represented by a series of observations
x = (x1, . . . , xn) which are independent and identically distributed and come from
a continuous distribution with probability density function f (x). For this set of
observations, the complete-data log-likelihood function is given by log(Lc(θ |x)) =
log

(∏n
i=1 f (xi)

)
, where θ = (

θ1, . . . , θp

)
is a vector of unknown parameters that

describe f (x) such as the mean and standard deviation. Consider further that a and
b are vectors that consist of all uncensored (fully observed values in a) and censored
(constrained values in b) observations of x. Recall that Susan’s observations of
demand after her first 10 days were [95, 100, 100, 92, 100, 88, 96, 100, 98, 100].
For this dataset, vector a is [95, 92, 88, 96, 98] and vector b is [100, 100, 100, 100,
100].

Given this separation of our data, we can write the corresponding incomplete-
data log-likelihood function as log (L (θ |a)) = log

(∫
Lc (θ |a, b) db

)
. Since the

observations in b are censored, the direct maximization of log (L (θ |a)) to esti-
mate θ is problematic. Instead of this direct approach to computing θ , the EM
algorithm solves the incomplete-data problem indirectly by iteratively employing
the complete-data log-likelihood function log (Lc (θ |x)). In particular, during the
Expectation step (or, the E-step) of each iteration k of the EM algorithm, the
complete-data expected conditional log-likelihood function is computed as
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Q(θ |θk−1) = E
{

log
(
Lc (θ |x)

)∣∣ a, θk−1
}

=
∫

log
(
Lc (θ |a, b)

)
p (b|a, θk−1) db, (1.1)

where θk−1 are the estimates for θ revised at iteration k − 1 and p (b|a, θk−1)

is the probability density function of b. In Eq. (1.1), we take the expectation of
log (Lc (θ |x)) given the fully observed data a and the previously estimated parame-
ter estimates θk−1 (vs. log (Lc (θ |x))) because log (Lc (θ |x)) is unobservable. With
Q(θ |θk−1) expressed analytically, the Maximization step (or, the M-step) of each
iteration k of the EM algorithm estimates θk such that Q(θ |θk−1) is maximized.
Upon its completion, the EM algorithm converges to a local maximum, but it has
been shown to typically converge (under fairly general conditions) to the global
maximum, of the incomplete-data log-likelihood function (Boyles 1983; Dempster
et al. 1977; Redner and Walker 1984; Wu 1983).

We next demonstrate the EM method for the specific case of the Normal
distribution. For clarity, we slightly alter the notations around x, n, a, b, and θ as
follows. We assume that the available M + N observations zi , 1 ≤ i ≤ M + N , are
realizations of a sequence of independent and identically distributed normal random
variables. The parameters θ = (

μ̂, σ̂
)

of the underlying normal distribution are
unknown and must be estimated. Of the M + N observations, M are constrained.
For these observations, zi = di , where di , the available inventory, constrains the
true value of zi . Since the demands for each day are assumed to be independent of
each other, we reorder the observations such that the first M observations in zi are
constrained, while the other N are exactly specified. For Susan’s data, this results in
the vector of observed sales: [100, 100, 100, 100, 100, 95, 92, 88, 96, 98].

If none of these observations were constrained, the complete-data likelihood and
log-likelihood functions Lc

(
μ̂, σ̂ |zi

)
and log

(
Lc

(
μ̂, σ̂ |zi

))
would be

Lc
(
μ̂, σ̂

∣∣ zi

) =
M+N∏

i=1

1

σ̂
√

2π
· exp(−(zi − μ̂)2/(2σ̂ 2))

=
(

1

σ̂
√

2π

)M+N

· exp

(
− 1

2σ̂ 2

M+N∑

i=1

(
zi − μ̂

)2
)

(1.2)

and

log
(
Lc

(
μ̂, σ̂

∣
∣ zi

)) = −M + N

2
· ln (2π) − (M + N) · ln σ̂ −

∑M+N
i=1

(
zi − μ̂

)2

2σ̂ 2

(1.3)
which can be maximized by the closed-form parameter estimates μ̂ and σ̂ :
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μ̂ = 1

M + N
·
M+N∑

i=1

zi = 1

M + N
·
( M∑

i=1

zi +
M+N∑

i=M+1

zi

)

σ̂ =
(

1

M + N
·
M+N∑

i=1

(
zi − μ̂

)2
)1/2

.

(1.4)

If we incorrectly assume that the observed values of newspaper sales from
Susan’s newsstand were not truncated, we would simply apply the parameter
estimators above to the sales data x = (100, 100, 100, 100, 100, 95, 92, 88, 96, 98)

to get μ̂ = 96.9 and σ̂ = 3.96. Because some of the observations are constrained,
however, these estimates for the mean and standard deviation are biased and
underestimate the true demand mean and standard deviation. The reason is that
in Eq. (1.2), the true zi values that correspond to the M constrained demand
observations are unobserved. Hence, we cannot directly use Eq. (1.4) to compute μ̂

and σ̂ for the incomplete-data problem. However, by conditioning on a current set of
parameter estimates μ̂k−1 and σ̂k−1, we can replace the values of zi by their expected
values Z

(k)
i such that E

{
log

(
Lc

(
μ̂, σ̂ |zi

)) | (zi, M < i ≤ M + N) , μ̂k−1, σ̂k−1
}

can be computed analytically (the E-step). We can then use formulas similar to
Eq. (1.4) to suggest revised estimates μ̂k and σ̂k for the parameters of the assumed
underlying normal demand distribution (the M-step). In formal terms (see, for
example, Swan 1969; Wolynetz 1979) the iterative application of the E- and M-
steps of the EM algorithm proceeds as follows:

Initialization Initialize μ̂ and σ̂ to be the sample mean and standard deviation
(uncorrected for the degrees of freedom) of all the unconstrained observations.
Thus, we express μ̂ and σ̂ as μ̂ = μ̂0 = (1/N) · ∑M+N

i=M+1 zi and σ̂ = σ̂0 =
((1/N) · ∑M+N

i=M+1(zi − μ̂0)
2)1/2. It should be noted that the EM method does not

work when all observations are constrained, so other unconstraining methods are
needed to handle these cases.

E-Step at Iteration k, k ≥ 1 Replace zi , 1 ≤ i ≤ M , with their expected
values Z

(k)
i . The values of Z

(k)
i are computed assuming that they are the expected

values of the normal distributions N
(
μ̂k−1, σ̂

2
k−1

)
left truncated at di = zi . Specif-

ically, if X is a normally distributed random variable with mean μ̂k−1 and standard
deviation σ̂k−1, Z

(k)
i = E[X|X > di,X ∼ N(μ̂k−1, σ̂

2
k−1)] = μ̂k−1 + σ̂k−1 · S(hi)

(or, equivalently, Z
(k)
i = E[T N(μ̂k−1, σ̂

2
k−1, di,+∞)] = μ̂k−1 + σ̂k−1 · S(hi)),

where hi equals (zi −μ̂k−1)/σ̂k−1 and S (h), the generic hazard function of a normal
distribution, can be expressed as S (h) = φ (h) / (1 − Φ (h)). The values S (hi) are
computed by replacing the generic element h with the corresponding hi , whereas φ

and Φ in the expression of the hazard function are the standard normal density
function and the standard normal cumulative distribution function, respectively.
Alternatively, Z

(k)
i can be computed through numerical integration (by using, for

example, the function integrated in R) as
∫ +∞
di

x · f (x) dx/
∫ +∞

di
f (x) dx, where

f (x) is the normal probability density function of X.
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M-Step at Iteration k, k ≥ 1 Revise the parameter estimates for μ̂ and σ̂ by
maximizing the expected conditional log-likelihood function

E
{

log
(
Lc

(
μ̂, σ̂ |zi

))∣∣ (zi, M < i ≤ N) , μ̂k−1, σ̂k−1
}
. (1.5)

The estimates for μ̂k and σ̂k are computed using

μ̂k = 1

M + N
·
(

M∑

i=1

Z
(k)
i +

M+N∑

i=M+1

zi

)

, and,

σ̂k =
(

1
∑M

i=1 T (hi) + N
·
(

M∑

i=1

(Z
(k)
i − μ̂k)

2 +
M+N∑

i=M+1

(zi − μ̂k)
2

))1/2

,

respectively, where hi = (
di − μ̂k

)
/σ̂k−1 and T (hi) = S (hi) · (S (hi) − hi).

Convergence Test If
∣∣μ̂k − μ̂k−1

∣∣ < ε and
∣∣σ̂k − σ̂k−1

∣∣ < ε, stop; otherwise,
proceed with iteration k+1 of the EM algorithm. The tolerance ε is typically a small
number such as 0.000001. If convergence is reached, μ̂k and σ̂k are the parameter
estimates of μ̂ and σ̂ . Similarly, Z(k)

i (or, Z(k+1)
i ) are then used as the unconstrained

values of zi , i ≤ M .
After running the EM algorithm on Susan’s truncated data for the sales of

newspapers, we obtain (after 15 iterations and a stopping criteria of 0.000001)
new estimates for the demand distribution of to get μ̂ = 99.59 and σ̂ = 6.93.
Note that while the estimated mean did not change much from the original estimate
(μ̂ = 96.9) that was based on the truncated data, the estimated standard deviation is
approximately 75% larger than the original estimate (σ̂ = 3.96). Since safety stock
decisions are often set as a direct multiple of the product demand distribution’s
standard deviation, the new estimate (based on the unconstrained data) will result in
a significantly larger suggested stocking level.

1.2.2 A Different Way of Estimating Demand

A different way of thinking about any demand estimation problem is to consider it as
the combination of two different random variables. The first random variable is the
probability that a customer “arrives” and is available to make a purchase. The second
random variable is, for each customer that arrives, the probability that a particular
customer will decide to purchase given the set of products that are presented to him
or her. While it is typical to estimate the cumulative demand during some aggregate
period of time, such as a day in Susan’s case, one can also break a time window
into sufficiently small slivers of time such that it is very unlikely that more than one
customer will arrive during that sliver of time. For Susan’s newsstand business, that
could be something like 15 s intervals. Thus, for each 15 s interval, the probability
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of a single unit of demand (assuming each customer only considers purchasing
one unit) can be represented by the probability of a customer arriving, times the
probability that a customer, after arriving, makes a purchase. If we estimate this
combined probability and then sum it up over all the 15 s intervals included during
the working hours that the newsstand is open for a given day, then we should end up
with the same daily demand distribution that we typically use for our newsvendor
calculations.

So what value do we gain from this new way of estimating demand? In Susan’s
case when she was only selling one product, the short answer is not much. Susan
only faces one real demand-related decision each day, how many newspapers to
purchase each morning. Thus, there is little value in breaking down the demand for
her newspapers between customer arrivals and a customer’s decision to purchase
or not. What she needs in order to apply her newsvendor calculation is an estimate
of the demand distribution for daily newspaper demand, which she can estimate
by applying the EM method on the data she has collected of the daily sales of
her newspapers. The real value of breaking demand down into these two separate
components comes when we need to estimate the individual product demand for
a single product when it is sold alongside similar products that are offered to the
customer at the time of purchase. In such a case, customers will often substitute
another product from the portfolio when their first choice is unavailable. How to
estimate the demand for each product in the portfolio is the topic of our next two
sections.

1.3 Estimating Demand for a Portfolio of Two Products with
Out-of-Stocks and Substitution Effects

Let us return to the scenario where Susan has added a second product—magazines—
to her newsstand. Susan now must estimate the demand for both newspapers and
magazines, given that one or both products may have been out of stock at some point
during the time when she collected sales data. If Susan employs one of the single
product unconstraining techniques discussed in the previous chapter, such as the EM
method, she will most likely overestimate the demand for each product. The reason
for it is that some customers are likely to choose a substitute product when their
first choice is not available. Thus, the observed demand for newspapers will contain
some substitute demand during the periods when magazines were out of stock. A
similar problem arises when she tries to estimate the demand for her magazines. In
Conlon and Mortimer (2013)’s study involving the tracking of inventory levels of the
various products sold through campus vending machines, they find that the products
that stock-out between replenishments are often the most popular products offered in
the machines. Failure to account for substitute demand during these periods of stock-
outs results in an underestimation of the demand for the products that stock-out and
an overestimation of the “true” demand for the products that do not stock-out.
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When attempting to estimate the demand for a product that is part of a larger
portfolio of products offered to each potential customer, one must be careful to
distinguish between “primary” demand for the product versus “spillover” demand,
which occurs when the customer’s first choice is not available during the time of
purchase. In Susan’s case, spillover demand may occur for magazines after her
newspapers have sold out, or vice versa. To help distinguish between primary and
spillover demand, it is helpful to think of demand in terms of the separate arrival and
purchase-choice components described at the end of the last section. That is, demand
for a product occurs only when a customer first arrives, evaluates the portfolio of
products available, and then chooses to purchase that product.

Anupindi et al. (1998) were among the first to tackle the problem of estimating
primary demand for a product when a portfolio of products are offered and the
demand data for at least one of the products is constrained. Their setting is a vending
machine that sells two products, A and B. For Susan’s newsstand setting with the
two products, two things are required to make the primary demand estimation for
each product straightforward. The first is that the overall customer arrival rate is
constant over time and can be represented by a Poisson distribution. That is, the
number of potential customers walking by the newsstand is the same at 8 a.m.
as it is at 4 p.m. The second required thing is that Susan is meticulous in her
record keeping such that she records the exact time during each day whenever a
product stock-out occurs. Anupindi et al. (1998) also provide a methodology for
estimating primary and spillover demand when the exact timing of the stock-outs is
not recorded. This methodology is useful when the inventory levels of the products
are only observed periodically, such as those managed by a periodic review system.
For brevity, however, we will only describe the first case, where the exact times of
the stock-outs are known.

Given that the two requirements above are met, a brief explanation of Anupindi
et al. (1998)’s method is as follows. In any given period of time between replenish-
ments (1 day in Susan’s case), there can be one of five possible outcomes: Neither
product A or B stocks out: (A,B), only Product A stocks out (A,B), only Product B
stocks out (A,B), first Product A stocks out and then Product B stocks out (A,B),
and first Product B stocks out and then Product A stocks out (B,A). This results in
five different intervals of time that can be observed, as each period starts with both
product A and B in stock and then either reaches the end of the period in the same
state or transitions to one of the other states. If the total amount of time in the period
of interest is T , then we can break this into five smaller intervals of time described
above as follows. Let TA,B represent the total time that both products were available,
TA,B represent the total time that only Product A was available, TA,B represent the
total time that only Product B was available, and TA,B represent the total time that
neither product was available. Since Susan has recorded the exact times of the stock-
outs, she can take several weeks’ worth of sales data for her newsstand and break the
total time period (for example, 5 weeks × 5 days/week × 10 h/day = 250 h) down
into the exact number of hours that fell into each of the five intervals described
above.
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In addition to the time interval data, Susan needs to record how much of each
product was sold during that time interval. For example, if 10 h of the total time
block of 250 h corresponds to time interval TA,B , then Susan needs to record how
many units of Product A were sold during this time interval (there should be no
recorded sales of Product B in this interval since it is assumed that Product B was
out of stock). Let DA and DB represent the total demand observed for Products A
and B, respectively, during the time interval TA,B . Let DA,B and DA,B represent
the total demand observed for Products A and B during the time intervals TA,B and
TA,B , respectively.

In order to estimate the primary demand for newspapers, for example, Susan
needs to estimate the customer arrival rate of the customers whose first choice is for
newspapers. The data she has available is the number of items sold for each product
during each time block. This is where the requirement of a time-invariant Poisson
process comes in. Let the overall customer arrival rate be Λ, which includes all
customers that arrive and purchase and those that arrive but do not purchase. Note
that the arrival and demand rates are the same in this setting because we assume that
each customer only chooses one unit of one option (they choose either Product A,
B or the no-purchase option). This overall arrival rate can be broken down into sub-
components as follows. When both products are in stock, the primary arrival rate
(demand rate) for Product A can be represented by λA, for Product B as λB , and for
the no-purchase option as Λ−λA −λB . Now assume that Product A is out of stock.
During this period of time, the arrival rate for Product B increases to λA,B and the
arrival rate for the no-purchase option increases to Λ − λA,B . A similar observation
holds for the time periods where only Product B is out of stock.

We now have all the notation we need for estimating the primary demand rates.
The primary demand rate for Product A is estimated from λA = DA/TA,B . The
primary demand rate for Product B is estimated from λB = DB/TA,B . Finally,
the primary plus spillover demand rates for Products A and B are estimated from
λA,B = DA,B/TA,B and λA,B = DA,B/TA,B .

Anupindi et al. (1998) show that the overall customer arrival rate can also be
estimated in this setting, as long as the arrivals follow a Poisson distribution. To
see how, we first need to calculate the probabilities that a given customer will
choose a given option. Let the probabilities that an arriving customer will choose
Product A when both products are in stock be pA, that they choose Product B be
pB , that they choose Product A when Product B is not in stock be pA,B , and that
they choose Product B when Product A is not in stock be pA,B . These probabilities
can be estimated as follows: pA = λA/Λ, pB = λB/Λ, pA,B = λA,B/Λ, and
pA,B = λA,B/Λ. The overall arrival rate can now be estimated from

Λ = DA + DB + DA,B + DA,B

TAB(pA + pB) + TA,BpA,B + TA,BpA,B

. (1.6)

Anupindi et al. (1998)’s estimation of the overall customer arrival rate was quite
groundbreaking, as it was one of the first attempts to estimate both the sales that did
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occur as well as the sales that could have occurred, but were not observed due to a
lack of product available to meet the demand. This is important because it allows
us to quantify how much demand we actually lose when an item is out of stock. To
see how, consider the following example for Susan’s newsstand. Let us assume that
the overall arrival rate, Λ, was estimated to be 30 customers per hour. When both
the newspapers and the magazines are in stock, the arrival rate of customers whose
first choice is a newspaper is estimated to be λA = 10 customers per hour. Now
suppose that the newsstand stocks out of the newspaper 1 h before the stand closes
for the day but the magazine does not stock-out. What did this stock-out cost Susan
in terms of lost profits?

To answer this question, we need to estimate how many of those 10 newspaper
customers that arrived during the last hour of the newsstand’s opening hours and
found that the newspapers were out of stock decided to purchase a magazine instead.
Let us assume that the profit margin for the magazine is also $0.75 per unit and
that the primary demand rate for magazine customers is estimated to be λB = 5
customers per hour. The arrival rate of customers that are willing to purchase a
magazine when the newspaper is out of stock is estimated to be λA,B = 8 customers
per hour. With these estimates, Susan can estimate the number of lost sales during
that hour that the newspaper was out of stock to be λA+λB −λA,B = 10+5−8 = 7
newspapers. Multiplying the unit number of lost sales times the profit margin of the
newspaper, Susan can estimate that she lost 7 × $0.75 = $5.25 from the stock-out
of newspapers on that day. A similar analysis can be done for cases where only the
magazine is out of stock, or even when both the newspaper and the magazine are
out of stock.

Of course, Anupindi et al. (1998)’s methodology only works under a restrictive
set of assumptions, the combination of which are unlikely to hold in most situations.
The most important of these assumptions is the requirement for a homogeneous
Poisson arrival rate and a portfolio of only two products. As we will see, estimating
an arrival rate of no-purchase customers remains one of the primary challenges of
more recent and sophisticated estimation methodologies.

1.4 Estimating Demand for a Portfolio of K Products with
Out-of-Stocks and Substitution Effects

In their appendix, Anupindi et al. (1998) extend their model to the case of more than
two products, with the restriction that each product has only one potential substitute
product, out of the portfolio of products that are offered. This restriction is fine
for the case where Susan only sells two products, a newspaper and a magazine, at
her newsstand. Suppose, however, that Susan expanded her portfolio to add a third
product, say a different daily magazine that is focused on only covering business
news. Without a substantial analysis, it is unclear that this new magazine will serve
as a substitute for only the newspaper or only the original magazine. Most likely, it
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will serve as a partial substitute for both. The methodology provided in Anupindi
et al. (1998) no longer suffices for this expanded product portfolio. The inclusion of
multiple substitution products requires a different estimation methodology, which
we describe next.

1.4.1 Using Discrete Choice Models for Estimating the Market
Shares for More than Two Products (Most General
Model)

Discrete choice models were developed to model how customers choose among
a set of multiple product options. As opposed to the more aggregate measures of
demand, such as 60 newspapers and 40 magazines on some given day, discrete
choice models capture the market share (percentage) of demand that each product
in a portfolio captures during some time period. Thus, the same demand example
represented by a discrete choice model with only newspapers and magazines as
options would be that any given arriving customer would have a 60% probability of
purchasing a newspaper and a 40% probability of purchasing a magazine. To equate
these probabilities into actual quantities, we need to estimate a customer arrival rate
over that same period of time, similar to the Anupindi et al. (1998) methodology.
If the number of customer arrivals during that same time period was 100 and every
customer who arrived had made a purchase, then the resulting estimated demand
quantities for each product would match the aggregate demand of 60 newspapers
and 40 magazines.

What if the number of customer arrivals was estimated to be 200, only 100
of which ended up making a purchase of either product. That is, not all arriving
customers end up making a purchase. To capture this scenario, it helps to add a third
option to our customer choice set—the “no-purchase” option. Thus, the customer’s
choice set now includes all the products in the portfolio of products for sale, along
with an option of not purchasing anything. With an arrival rate of 200 customers
but only 100 total purchases, our new market share estimates are 30% market share
for newspapers, 20% for magazines, and 50% for the no-purchase option. With our
new, more complete, choice set, we next provide a more formal explanation of how
a discrete choice model attempts to capture the customer buying decision.

Discrete choice models are based on the concept of utility that represents the
“value” an individual places on different products and different product attributes,
thus capturing how individuals make trade-offs among a portfolio of products.
Individual customers are assumed to select the alternative that provides them with
the maximum utility. Alternative j is chosen by customer i if the utility that
customer obtains from alternative j at time t , vi,j,t , is greater than the utility
for all other alternatives available at time t in the choice set St . The utility
Ui,j,t has an observed component, vi,j,t , and an unobserved component, εi,j,t ,
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commonly referred to as an “error term.” The observed component, often called the
systematic or representative component of utility, is typically assumed to be a linear-
in-parameters function of attributes that vary across individuals and alternatives.
Formally, the observed component of utility for customer i of product j at time t is

vi,j,t = αi,j,t + βxi,j,t , (1.7)

where xi,j,t represents the vector of k attributes of product j exposed to customer i

at time t and β = (β1, . . . , βk) is an unknown vector of coefficients corresponding
to the set of k product attributes. The first term on the right hand side, αi,j,t , is an
alternative-specific constant (ASC). From a modeling perspective, including ASCs
in a discrete choice model is similar to including an intercept term in a regression
model. From an interpretation perspective, ASCs capture the average effect of all
unobserved factors left out of the model. Due to underlying identification rules,
given a total of k alternatives in the universal choice set, at most k − 1 parameters
can be estimated.

Different discrete choice models are derived via assumptions on the error terms.
One of the most common discrete choice models is the multinomial logit (MNL)
model. The MNL model is derived by assuming εi,j,t ’s are i.i.d. Gumbel random
variables. The attributes of the no-purchase option is assumed to not vary across
customers or over time. Thus, vi,j,t = v0 for this choice. Under these assumptions,
the choice probability that customer i chooses alternative j at time t and the no-
purchase probability are given, respectively, as

Pi,j,t = eνi,j,t

∑
j∈St

eνi,j,t + eν0
and P0 = eν0

∑
j∈St

eνi,j,t + eν0
. (1.8)

To estimate (1.8) based on observed sales and customer transaction data, we can
use maximum likelihood estimation. We shall assume we have data describing i =
N customer choice decisions. Define Customer i’s purchase decision by the values

δi,j,t =
{

1, if customer i purchases product j at time t,

0, otherwise
(1.9)

where

J∑

j=1

δi,j,t ≤ 1.

Then, the customer utility model can be expressed as

νi,j,t = αj + βxi,j,t . (1.10)
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The model (1.10) indicates that each customer may have a different utility for
a given product and that this utility may vary across time periods as the product
attributes vary over time. This most general model is appropriate for settings such
as with online retailers, where observed attributes such as the product price may vary
across different customers and over time. Since the retailer may change the price of
a product over time, the relative utility that this product provides to a customer will
depend on how much higher or lower the price is compared to the prices of the other
products in the available assortment as well as any outside option.

For utility model (1.10), the data consists of the values of δi,j,t : i = 1, . . . , N ,
t = 1, . . . , T , j = 1, . . . , K together with the choice sets Si,t : i = 1, . . . , N ,
t = 1, . . . , T . The choice sets can be determined, for example, by tracking the
on-hand inventory status prior to each purchase.

1.4.2 Special Case Where We Know the Customer Arrival Rate

We start with a special case where we know the true customer arrival rate, Λ.
Assume a discrete choice model for which an observation represents a customer,
a vector of attributes associated with the customer and the products, and the chosen
product. The problem of interest is to solve for the parameters β∗ given a random
sample of observations. Maximum likelihood estimation solves for the values of β

that maximize the likelihood function

L (β) =
N∏

i=1

T∏

t=1

∏

j∈Si,t

(
Pi,j,t

)δi,j,t . (1.11)

Since we know the true arrivals of each customer, we can track the buy or no
buy decision of each customer i = 1, .., N . Upon arrival, each customer observes a
choice set Si,t , where j ∈ Si,t are alternative products in the choice set for customer
i in time period t , Pi,j,t is the probability that individual i selects alternative j in
time period t given a sample of attributes xi,j,t and parameter estimates β, and
xi,j,t is the vector of attributes associated with alternative j and individual i in time
period t .

Computationally, it is easier to maximize the logarithm of the likelihood function,
i.e., the log-likelihood (LL) function

LL (β) =
N∑

i=1

T∑

t=1

∑

j∈Si,t

δi,j,t ln Pi,j,t . (1.12)

The β parameter estimates are obtained by using optimization algorithms that
maximize the log-likelihood function. In the case of the multinomial logit models,
the log-likelihood function is globally concave. This can be verified by examining
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its first and second derivatives with respect to β. The log-likelihood can be further
expanded as follows:

LL(β) =
N∑

i=1

T∑

t=1

∑

j∈Si ,t

δi,j,t ln

(
evi,j,t

∑
j∈Si,t

evi,j,t

)
(1.13)

LL(β) =
N∑

i=1

T∑

t=1

∑

j∈Si,t

δi,j,t

(
βT xi,j,t − ln

∑

j∈Si,t

eαj +βxi,j,t

)
. (1.14)

Let dj represent the expected demand for product j , j = 1, . . . , K . The expected
demand for product j can be estimated by simply multiplying the aggregate
customer arrival rate times the estimated probability that a customer will choose
product j should product j be available in the choice set at the time of their arrival

dj =
N∑

i=1

T∑

t=1

ΛPi,j,t . (1.15)

1.4.3 Estimating the Choice Probabilities and the Customer
Arrival Rate

For the remainder of this section, we do not assume that we know the overall
customer arrival rate, Λ. Thus, the estimation problem becomes much more
complex, as we now have to estimate the coefficients of the choice model (β) and the
customer arrival rate (Λ) simultaneously. This is the equivalent constrained demand
problem for multiple substitute products.

Despite the prevalence of the multi-product unconstraining problem in retail
settings, there has been comparatively little work that specifically focuses on a
retail setting. Instead, much of the work on this problem has been performed on the
single-leg airline revenue management problem, where an airline will offer multiple
variations of its core product (an airline seat from a particular origin to a particular
destination at a particular time and date). While the physical product is the same (a
coach-class seat on an airplane), airlines typically create different versions of this
product by imposing restrictions (i.e., refundable tickets vs. non-refundable tickets).
An airline will offer these different product variations up until the time of the flight’s
departure, with sales occurring at various time points and the airline making some
variations of the product available or not available at different time points in the
booking curve.

Talluri and van Ryzin (2004), hereafter referred to as TvR, were the first to pro-
pose modeling a single-leg choice-based revenue management problem by directly
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integrating customer choice behavior into the objective function. Specifically, the
objective is to find subsets of the K total products to offer, St , at each point t in time,
for each remaining capacity to maximize revenue. The booking curve (timeline of
purchases up to the day of departure) is broken into T discrete time periods, starting
at period 0 and ending at period T . The arrival rate is assumed to be constant over the
booking curve and is represented as λ�(t) = Λ/T . Dynamic programming (using
backward induction) is used to solve the objective function, given as

Vt (x) = max
St∈K

{∑

j∈St

{λ�(t)Pj (St )[pj + Vt−1(x − 1)]

+ [λ�(t)P0(St ) + (1 − λ�(t))]Vt−1(x)

}
. (1.16)

In the TvR formulation, the utility associated with the no-purchase alternative
is assumed to be ν0 = 0, and the arrival rate is interpreted as the probability
that a customer arrives to the system in a given time window. Importantly, the
population of arriving customers includes those who arrive and purchase a product
from the portfolio offered to them, as well as those who arrive and decide not to
purchase any product from the available portfolio. As in our previous examples, the
sales data used to estimate their model typically only includes the observations of
customers who arrive and purchase a product. Thus, it is impossible to distinguish
between time periods where a customer arrived and did not purchase a product (i.e.,
purchased from a competitor or did not purchase any product) and periods in which
no customer arrived. To estimate this potential market size, or the total number of
“potential” customers, TvR use a variation of the Expectation-Maximization (EM)
method described in the previous section.

Note that TvR estimate a special case of (1.10) where the product attributes
(such as price) change over time, but all customers arriving in the same time
period observe the same choice set and the same product attributes. This setting
is appropriate for most revenue management applications because contractual
obligations between the airline or hotel with their third-party distribution networks
(such as Expedia or Orbitz) require that product pricing be consistent across
platforms. It may be less appropriate in online retailing applications, where certain
customer segments receive personalized pricing offers at the same time that other
customer segments observe different prices. We conclude with the most restrictive
case, where the product attributes do not vary across customers or over time. While
being the most restrictive, this model captures a wide range of practical scenarios,
one example of which is the newsstand example from the beginning of this chapter.

Table 1.1 summarizes the three model versions we discuss in this section. While
describing a method for estimating the most general model (1.10) is beyond the
scope of this chapter, the reader is referred to Im et al. (2018) for a discussion of
how to estimate this model. Instead, we will focus on the two special cases where
either the product attributes only vary over time or they do not vary at all.
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Table 1.1 A summary of tested parameter values

Product attributes Probability function

Vary by time and customer Pij (Sit ) = exp(νij t )∑
l∈Sit

exp(νilt ) + exp(νi0)
, j ∈ Sit , where

νij t = αj + βxij t

Vary only by time Pj (St ) = exp(νjt )∑
l∈St

exp(νlt ) + exp(ν0)
, j ∈ St , where

νjt = αj + βxj t

Are constant Pj (S) = exp(νj )∑
l∈St

exp(νl) + exp(ν0)
, j ∈ S, where

νj = αj + βxj

All combinations of these values constitute 13,689 numerical experiments

1.4.3.1 Special Case Where Product Attributes Change Over Time but
not Across Customers in the Same Time Period

In the case where the attributes of a given product are the same for all customers
within each time period. Let St denote the set of alternatives available to all arriving
customers in the time window t . Define a given customer’s purchase decision by the
values:

δj,t =
{

1, if an arriving customer purchases product j at time t,

0, otherwise.
(1.17)

Then, the customer utility model simplifies to

νj,t = αj + βxj,t (1.18)

The reduced model (1.18) indicates that each customer has the same utility for
a given product but the utility can still vary across time periods as the product
attributes vary over time. This model is appropriate for settings such as a traditional
brick-and-mortar retailer, where observed attributes such as the product price are the
same for all the customers that are in the store during the same time window. The
retailer may change the price of a product over time, however, so the relative utility
that this product provides to a customer will depend on how much higher or lower
the price is compared to the prices of the other products in the available assortment
as well as any outside option.

The choice probability for alternative j , and the probability for the no-purchase
alternative, for a customer arriving at time t are given, respectively, as

Pj,t (β, St , Xt ) = exp
(
β ′xj,t

)

∑
j∈St

exp
(
β ′xj,t

) + exp
(
V0,t

) , j ∈ St , (1.19)
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and

Pj=0,t (β, St , Xt ) = exp
(
V0,t

)

∑
j∈St

exp
(
β ′xj,t

) + exp
(
V0,t

) . (1.20)

These probabilities are a function of the available choice set St available at time t ,
the matrix of attributes Xt of the available alternatives in that choice set, attributes
of the choice itself (e.g., the day of the week when the purchase occurs), and a
vector of parameters β that needs to be estimated. For convenience, we denote
the complement of (1.20) as Pt (i.e., Pt (β, St , Xt ) = 1 − P0,t (β, St , Xt )), which
represents the probability of purchasing some product from the firm. We also define
a set of choice probabilities for the alternatives conditioned on the fact that some
purchase is made,

Pj,t |δ=1 (β | t, St , Xt ) = exp
(
β ′xj,t

)

∑
j∈St

exp
(
β ′xj,t

) . (1.21)

Note that (1.21) specifically excludes the no-purchase alternative.
It is well known that utility maximization models are only unique up to the scale

of utility. Adding a constant to every utility value will result in an identical set
of probabilities. Thus it is not possible to generate unique parameter estimates for
ASCs for each alternative, and at least one alternative in the model needs to be set
as the reference and given a fixed constant utility value to ensure these parameter
estimates are unique. TvR choose the reference alternative to be the no-purchase
alternative by setting Vj=0 = 0, but, as it will become evident in the next section,
that choice will become restrictive. Instead, we parameterize the utility of the no-
purchase alternative, denoting it as γ , and assume that the modeler imposes other
suitable restrictions (see Ferguson et al. 2012) within the β vector to ensure the
parameter estimates are unique.

For notational clarity, the probabilities indicated by (1.19) are denoted as
Pj,t (β, γ ), the choice probability of the no-purchase alternative and its complement
are denoted as Pj,t (β, γ ) for j ∈ {1, . . . , K} and Pj=0,t (β, γ ), respectively, and
the choice probabilities conditional on some purchase given in (1.21) are denoted as
Pj,t |δ=1(β). Importantly, Pj,t |δ=1 is a function of β but not of γ . In each case, the
conditionality upon the observed data and available choice set is implied.

Direct Estimation Approach
A direct estimation of the likelihood-maximizing parameters of the arrival and
discrete choice models is complicated by missing data. Formally, when there are
K possible products for sale, the customer arrival and purchase processes can result
in one of K+2 mutually exclusive and collectively exhaustive outcomes: K discrete
outcomes associated with a customer arriving and choosing to purchase one of the
K products offered by the firm, one discrete outcome associated with a customer
arriving who chooses not to purchase any product from the firm, and one discrete
outcome associated with no customer arriving.
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An uncensored data observation would uniquely observe which of these K + 2
outcomes occurred in each discrete time slice. A censored data observation differs
in that the no-purchase and no-arrival outcomes are indistinguishable, jointly
representing the same observable outcome. The complexity of the log-likelihood
function for censored data arises because the censoring requires the summation
of the no-purchase and no-arrival probabilities in calculating the likelihood, before
taking the logarithm.

At an abstract level, the log-likelihood function is given as

LL(β, γ, λ) =
∑

t∈T

log
(
Prt

(
δj,t | β, γ, λ

))
, (1.22)

with T as the set of all discrete time slices in the estimation data, δj,t as the observed
outcome in time slice t (for example, the purchase of a Y-class ticket in time slice
t), and Prt (j | β, γ, λ) as the probability of outcome j occurring in time slice t ,
given the model and parameters β, γ , and λ. For the time slices in which a sale is
observed (denote this set of time slices as P), the value Prt (δt = 1 | β, γ, λ) is
given by the joint probability that a customer arrives and that the arriving customer
chooses to purchase at least one of the available product options j ∈ St from the
firm, giving

Prt (δt = 1 | β, γ, λ) = λPt,δt=1(β, γ ), ∀t ∈ P.

For all other time slices (denote this set of time slices as P̄), the outcome is that a
sale is not observed. The probability of that outcome is the sum of the probabilities
of the two possible reasons: no purchase and no arrival, giving

Prt (δt = 0 | β, γ, λ) = λPt,δt=0(β, γ )
︸ ︷︷ ︸

no purchase

+ (1 − λ)︸ ︷︷ ︸
no arrival

, ∀t ∈ P̄.

Thus, the resulting log-likelihood function for the model with censored data can be
written as

LL(β, γ, λ) =
∑

t∈P

[
log

(
λPt,δt=1(β, γ )

)]+
∑

t∈P̄

[
log

(
λPt,δt=0(β, γ ) + (1 − λ)

)]
.

(1.23)
Maximum likelihood estimators for β, γ , and λ can be found by maximizing this
log-likelihood function. However, this function is not generally concave and TvR
suggest it may be hard to maximize. Nevertheless, the size and scope of some RM
problems may allow for the direct maximization of this log-likelihood function. If a
particular problem is found to be computationally tractable using regular maximum
likelihood estimators, then that approach should be preferentially employed. If,
however, directly maximizing (1.23) is found to be difficult, slow, or if there is
concern about converging to local optima, then other approaches can be considered.



22 M. E. Ferguson

Application of the Expectation-Maximization Method for Estimating the
Arrival Rate
Instead of directly maximizing (1.23), TvR use the Expectation-Maximization (EM)
method. In this application, the EM method is used to estimate the market size (i.e.,
the total number of “potential” customers) without having actual observations of
no-purchase customers. The EM method avoids calculating the actual censored data
log-likelihood given in (1.23), and instead focuses on calculating the expected value
of that log-likelihood, which incorporates observed data as well as the expected
value of unobserved data. In their Eq. (1.15), TvR write an expected log-likelihood
function for the sales model (assuming γ = 0) as

E [LL (β, λ)] =
∑

t∈P

[
log(λ) + log

(
Pt,δt=1(β, γ = 0)

)]

+
∑

t∈P̄

[
â(t)

(
log(λ) + log

(
Pt,δt=0(β, γ = 0)

))

+ (
1 − â(t)

)
log (1 − λ)

]
, (1.24)

with â(t) as the expected value of a(t), an indicator variable that takes on a value
of 1 if an arrival occurred at time t and 0 otherwise. Where t ∈ P̄ , the value of a(t)

cannot be observed, as either a customer arrives but chooses to purchase nothing
or no customer arrives. These two outcomes are indistinguishable in the data. The
EM algorithm iterates between updating the expected log-likelihood function given
a distribution for the missing data (essentially, replacing a(t) in (1.24) with its
expected value) and maximizing that function, a process which is widely accepted
as effective but slow. As previously discussed, when the EM algorithm converges, it
converges to a local stable point of the likelihood function. Often, this represents a
local maximum for the underlying censored data log-likelihood, but it could also be
a saddle point or a local minimum of that function. Maximizing the function given
in (1.24) is appealing because β and λ are fully separable, and both components are
easy to maximize globally concave sub-problems. However, this approach requires
multiple iterations between the expectation and maximization steps.

The application of the EM method to a choice model that includes product
attributes has some significant limitations. First, an unlucky choice for the time
slices can lead to inconsistent parameter estimates (Talluri 2009). TvR recommend
that the time slices be chosen such that the probability of two arrivals occurring in
the same period is small, although they do not provide any guidance on what exactly
constitutes small. Newman et al. (2014) show that time periods as small as 15 s
may be required for the EM method to achieve reasonable accurate estimates. Of
course, smaller time windows result in longer computation times needed to estimate
a model, since the EM iterates between the expectation and maximizing steps. If the
initial values for the parameter estimate are far from the point of convergence, the
estimation times take even longer Newman et al. (2014), resulting in unacceptably
long times for a firm that must estimate thousands of different models. Third, the



1 Estimating Demand with Constrained Data and Product Substitutions 23

EM method is not guaranteed to converge to a global maximum, leading to an
identification issue (Dempster et al. 1977). Fourth, the exact product portfolio needs
to be recorded during the time period for which no purchase occurred. Thus, the
firm must make a conscious effort to collect this information, since it is typically
not included in the regular sales transaction data.

To rule out the first two limitations described above, Newman et al. (2014)
propose an alternative estimation approach, which they term a two-step (TS)
approach. Compared to TvR, the time slices for the arrivals are converted from
discrete time to continuous time, by modeling the arrival process as a Poisson
distribution. In the first step of their methodology, the choice model parameters
(excluding the no-purchase option) are estimated by maximizing a partial likelihood
function. The no-purchase utility parameter and the arrival rate are estimated in the
second step, dramatically speeding up the computation times. One drawback of their
method, however, is that the second step sometimes becomes too unstable to provide
consistent estimates. A second limitation, which is shared by the TvR formulation,
is that customers are assumed to arrive at a constant rate throughout the booking
curve.

Subramanian and Harsha (2017) present a loss minimization (LM) method which
minimizes an objective function of prediction errors based on the assumed demand
and market size models. To obtain the parameter estimates, the authors use an
optimization algorithm instead of a maximum likelihood estimation. Although their
approach allows for non-constant arrival rates, the known covariates for the market
size model are necessary conditions for estimating the arrival rate. The LM method
may not work well when the number of arrivals is relatively small within each time
window.

The joint estimation of a choice model and an arrival rate with constrained
demand where the product attributes change over time remains a challenging
problem. While the papers described above have made progress in solving this
problem, there does not appear to be an established methodology that has been
universally adopted. Instead, some researchers have shifted their focus to a further
relaxation of this problem. In the next subsection, we discuss some work on the
variation of this problem when the product attributes do not change over time.

1.4.3.2 Special Case Where the Product Attributes Do Not Change Across
Customers or Over Time

While the more general approach described above can be used to estimate the true
demand for newspapers and magazines at Susan’s newsstand, we can take advantage
of the fact that Susan never changes the price on either of these two products.
The fact that the product attributes of the newspaper and the magazine do not
change over time allows for a much simpler formulation, that we call a ranked-
preference approach. In a ranked-preference approach, each customer is assumed
to have a ranked ordering of products, starting with their most desirable (highest
utility) product down to their least desirable product. In the simple case of Susan’s
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newsstand, there are three product options: a newspaper (N), magazine (M), and no
purchase (NP). A customer with a ranked-preference list of (N, M, NP) means that
that customer will purchase a newspaper if one is available, a magazine if one is
available but a newspaper is not available, and will only choose not to purchase
anything if both newspapers and magazines are not available. Thus, there are
3! possible ranked-preference combinations: (N, M, NP), (N, NP, M), (M, N, NP),
(M, NP, N), (NP, N, M), and (NP, M, N). If a customer with a ranked-preference list
of (N, M, NP) purchases a newspaper, that demand is considered to be “primary”
demand for newspapers, since it was the customer’s first choice. If the same
customer arrived and found that all the newspapers were sold out, the customer
would purchase a magazine, which would be considered “spillover” demand for the
magazine and unfulfilled “primary” demand for the newspaper.

In this scenario, both the customer and the product attributes are constant across
each time period so the customer utility model can be simplified to vj = αj + βxj .
When the product attributes are also assumed constant, the utility model further
simplifies to a constants only model

vj = αj . (1.25)

Vulcano et al. (2012) suggest for the constants only model an unconstraining
method that employs the EM method and an outside estimate of the market share of
the no-purchase option. The market share information is used for model parameter
identification, and a non-homogeneous Poisson arrival process is assumed for the
arrival rate. An outline of their approach is as follows. Let Pj (S, v) denote the
probability that a customer chooses product j ∈ S when S is offered and the
preference weights are given by vector v. Then,

Pj (S, v) = vj∑
j∈S vj + 1

. (1.26)

The no-purchase option is assumed to have a preference weight equal to 1 (similar
to the assumption of zero utility in the TvR formation) such that the no-purchase
probability is

P0(S, v) = 1
∑

j∈S vj + 1
. (1.27)

One major difference between the method proposed in Vulcano et al. (2012)
and the methods discussed in the previous subsection is that the time periods in
Vulcano et al. (2012) can be much larger and contain aggregated demand, whereas
the time periods in TvR (and subsequent other methods where the product attributes
can change over time) are required to be small enough, so that the likelihood of
two arrivals in the same period is very small. Indeed, the time periods in Vulcano
et al. (2012) need only be small enough that the same subset of products be made
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available and the arrival rate remains constant. Thus, a time subscript is added to
both the arrival rate and the choice set notation: λt and St .

The statistical challenge in Vulcano et al. (2012) is to estimate the parameters of
their model. Both the vector of preference weights, v, and the vector of arrival rates
λ must be estimated using only sales transaction data. Let zj,t denote the primary
demand for product j in time period t . Note that we do not actually observe the
primary demand for each product (it may not have been available in that period,
or the sales for product j may have included some spillover demand from other
products that were not available). Next, define zj as the total primary demand for
product j , where zj = ∑T

t=1 zj,t and z0 is the primary demand for the no-purchase
option. If the primary demands were known, the log-likelihood function would
simply be

LL(v) =
K∑

j=1

zj log

(
vj

∑K
l=1 vl + 1

)

+ z0 log

(
1

∑K
l=1 vl + 1

)

. (1.28)

Of course, the primary demands are not known and must be estimated. Vulcano
et al. (2012) do so by utilizing an estimate of the total market share for the firm
(the market share the firm would have if all its products were available in every
time period). Combining this total market share with the observed number of total
purchases provides an estimate for the total customer arrival rate in each time period.
They then employ a variation of the EM method, starting with initial estimates
of the preference weights, v, to compute estimates for the primary demand for
each product (the E-step). They then use these estimates to maximize the log-
likelihood function (1.28) (the M-step) until convergence is achieved. For details,
see Sect. 3.5.2 in Vulcano et al. (2012).

1.5 Conclusions

As teachers, researchers, and practitioners of operations management and industrial
engineering, our community has historically concentrated on the more tractable
aspects of problems involving the setting of capacity, staffing, or inventory levels
to efficiently meet an uncertain future demand. In this chapter, I have presented
an argument that more focus should be placed in both our teaching and research
on the less-tractable, but perhaps even more important, problem of estimating this
future demand. While estimation methods have primarily focused on time-series
forecasting and other predictive analytics techniques, there is a common underlying
assumption in these methods that our historical data represents the true demand for
the product or service that we are trying to estimate. In most applications, however,
this is simply not the case. The recording of sales data (rather than demand data)
and the reality of product substitution behavior results in truncated data available
for estimation purposes. Ignoring this fact when estimating demand distributions
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for our optimization models can result in significant cost or profit implications—the
best optimization models cannot compensate for poor quality inputs.

All is not lost, however, as there has been some work devoted to improving the
estimates of demand distributions by first “unconstraining” the underlying sales
data. The earliest work in this area assumed that the demand for a product was
independent of all other products sold through the same channel or store. Some
of these methodologies employed statistical concepts such as the Expectation-
Maximization algorithm. Subsequent work extended these concepts to simple
variations of product substitution scenarios, where two products may partially
substitute for each other when the other is out of stock. In such cases, it is assumed
that the attributes of the two products (such as product prices) do not change over
time. Thus, some early applications of these methodologies were for sales channels
where these assumptions held, such as estimating the demand for products sold
through vending machines.

As our community became more aware of the reality of product substitution
effects, we started incorporating this behavior into our optimization problems. One
early summary of this work by Mahajan and van Ryzin (1999) provides a review of
how the newsvendor model can be adjusted to allow for product substitution effects
using these new demand estimates. As one may expect, including substitution
effects results in optimal inventory stocking solutions where the firm should
stock relatively more of popular products and less of unpopular products than
a traditional newsvendor analysis indicates, due to excess substitution demand
combined with reduced underage costs from having substitute variants as backups.
As with the earlier work on inventory management, however, the development of
more sophisticated optimization models incorporating various product substitution
effects outpaced the development of new estimation techniques required to provide
the inputs for these optimization models.

The extension of inventory models with product substitution effects to scenarios
with more than two substitute products in the portfolio often required the use of
consumer-choice models, such as the MNL model. Choice models do not estimate
the total demand distribution directly, but rather estimate the probability that an
arriving customer will choose any particular product out of the assortment of
products made available to him or her. Thus, choice models must be combined
with estimates of an arrival rate in order to provide an estimate of total demand
for a product. This creates a challenge as both the choice probabilities and the
customer arrival rates must be estimated from the same truncated sales transaction
data, resulting in a rather complex multi-parameter estimation problem. While some
progress has been made in this area, these methodologies are not yet equipped to
solve the increasing common problem of estimating product demand for online
retailers who regularly change product assortments, product prices, and other
product features based on such triggers as timing, available stocks, and individual
customer characteristics. While this chapter presents a summary of the work to date,
much more research is needed before anyone can claim to have provided an efficient
solution to these new retail settings.
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Chapter 2
Selling Innovative Products to Anxious
Consumers

Yufei Huang, Bilal Gokpinar, Christopher S. Tang, and Onesun Steve Yoo

Abstract When deciding whether to adopt an innovative product, consumers often
experience different levels of anxiety that prompt them to resist purchase. In some
cases, consumers’ anxiety is mitigated by “validation” through externality (e.g., the
number of early adopters). To reduce consumers’ anxiety, firms can also invest in
“familiarization” through promotion (e.g., free trials). In this chapter, we conceptu-
alize an innovative product as a product that engenders anxiety, and present a model
that employs a consumer utility model focusing on the psychological dimension.
We examine the firm’s profit-maximizing promotion and pricing decisions when
selling to forward-looking consumers in the presence of externality. Our equilibrium
analysis reveals that, unlike the conventional wisdom for promoting new version of
an existing product, for anxiety-inducing innovations with externality, accelerating
the speed of adoption through promotion can actually be detrimental to the firm.

Keywords Innovative product introduction · Adoption anxiety · Promotion ·
Externality

2.1 Introduction

When selling an innovative product, a firm needs to examine the underlying factors
that drive consumers’ purchasing decisions. Hellofs and Jacobson (1999) find that
consumers often evaluate both objective functional and the subjective psychological

Y. Huang
Trinity Business School, Trinity College, Dublin, Ireland
e-mail: y.huang@bath.ac.uk

B. Gokpinar · O. S. Yoo
UCL School of Management, University College London, London, UK
e-mail: b.gokpinar@ucl.ac.uk; o.yoo@ucl.ac.uk

C. S. Tang (�)
UCLA Anderson School of Management, University of California, Los Angeles, CA, USA
e-mail: chris.tang@anderson.ucla.edu

© Springer Nature Switzerland AG 2020
S. Ray, S. Yin (eds.), Channel Strategies and Marketing Mix
in a Connected World, Springer Series in Supply Chain Management 9,
https://doi.org/10.1007/978-3-030-31733-1_2

29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31733-1_2&domain=pdf
mailto:y.huang@bath.ac.uk
mailto:b.gokpinar@ucl.ac.uk
mailto:o.yoo@ucl.ac.uk
mailto:chris.tang@anderson.ucla.edu
https://doi.org/10.1007/978-3-030-31733-1_2


30 Y. Huang et al.

benefits and costs before they make purchasing decisions.1 Unlike a new version
of an existing product, we define an innovative product as a product that engenders
anxiety—subjective psychological factors that play a prominent role in deciding
whether to purchase an innovative product. (Castano et al. 2008) argue that an
innovative product brings about different anxieties: (1) the disruption of established
habits (Ram 1989; Ram and Sheth 1989); (2) the need to learn about the new
technology; (3) the anxiety of letting go of the old technology (Fournier 1998;
Hoeffler 2003; Castano et al. 2008); and (4) the anxiety over privacy and cyber
security of internet-based products/services. While consumers with low anxiety
level will likely become early adopters, those with higher anxiety level may delay
their purchase until their anxiety level decreases (Ram and Sheth 1989). Consider
the following examples:

1. Satellite TV or TV-set top boxes such as Apple TV or ROKU. These innovative
products allow consumers to watch TV and stream various programs using a
single source at a lower cost than other alternatives including cable TV.

2. Contactless payment technology that was recently introduced by Transport for
London. This innovative service allows customers to tap their debit/credit cards
at the turnstile gates and therefore eliminates the need to wait in line to purchase
traditional tickets or travel cards (e.g., an Oyster card).

3. Uber or Lyft. These innovative mobile app services allow consumers to access
Taxi service within minutes via a smart phone from arbitrary locations at a
reduced cost.

Despite the seemingly superior objective functional benefits2 (simpler user inter-
faces: simple Apple TV control versus complex TV remote control, convenience:
no need to top up the value of Oyster card, and ease of use: users can hail a ride
without the need to explain the pick-up and drop-off locations) that these new-
generation products or services offer over existing alternatives, many consumers
are still reluctant to adopt them due to various anxieties including: “Will it work
with my other products?”, “Is it secure enough?”, and “Will I be able to use it
easily?” Therefore, when launching an innovative product, a firm must consider
ways to manage consumer anxiety in order to improve adoption speed and maximize
profit.

1The subjective component of utility is different from models of bounded rationality, which
considers consumers with cognitive limitations or psychological biases. We do not assume
that consumers use simple heuristics to make complex decisions, or display certain intrinsic
psychological tendencies. See Ren and Huang (2018) for a recent review of modeling bounded
rationality in operations management.
2These objective functional benefits are essentially the additional willingness to pay over compa-
rable traditional products. This additional valuation can be measured via lab experiments and it
is well examined by consumer behavior researchers (Sheth et al. 1991; Dahl and Moreau 2002;
Mukherjee and Hoyer 2001).
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The diffusion literature suggests that new product adoption is driven by: (1) an
internal anxiety factor that can be reduced through externality, and (2) an external
anxiety factor that can be mitigated through familiarization and pricing decisions
(Bass 1969; Gatignon and Robertson 1985; Chatterjee and Eliashberg 1990; Peres
et al. 2010). First, through externality, consumers can reduce their anxiety levels
by observing other adopters. For example, an anxious consumer who is initially
reluctant to use Uber (or contactless payment or TV top boxes) may become
more comfortable adopting it after observing many other users. Second, through
familiarization, a firm can help consumers reduce their anxiety levels by offering
free trials or training videos/seminars.

These observations motivated us to develop a model that captures both the
internal factor (i.e., validation through externality) and the external factor (i.e.,
familiarization through promotion) so that we examine whether a firm should
promote its innovative product and how to set its prices over two time periods (the
launch period and the post-launch period), when consumers experience the above
anxiety factors. Specifically, we consider a situation in which the new product’s
objective quality is known, but its adoption engenders anxiety. We employ a
consumer utility model that focuses on subjective anxiety and present a stylized
model that captures three salient features: (1) consumers are heterogeneous in
their anxiety levels, (2) psychological anxiety can be reduced by firm’s promotion
strategy (due to familiarization effect) as well as the number of early adopters (due
to externality effect), and (3) consumers are forward-looking (i.e., they may delay
their purchase decisions to lower their anxiety or in anticipation of price drops).

The analysis of our two-period model enables us to obtain two main results.
First, we find that decreasing the selling price over time (price markdown) is
always optimal for the firm when externality is absent. However, in the presence of
externality, increasing the selling price over time can be optimal for the firm. This
is because, lowering the price in the launch period increases the number of early
adopters, which reduces the remaining consumers’ anxiety and raises their valuation
of the product. Thus, firms can benefit from the markup pricing by capturing the late
adopters at a premium price. This is consistent with penetration pricing strategy of
networked goods (Dhebar and Oren 1985). Second, we find that, in the presence
of externality, promoting the new product too hard during the launch period can
lead to lower profit for the firm. This is because externality enables the firm to reap
reward from charging late adopters a higher price during the post-launch period.
Therefore, employing familiarization strategy through promotion may offset this
benefit because it increases the speed of adoption and decreases the number of late
adopters.

The rest of the chapter is organized as follows. Section 2.2 discusses the
externality mechanism by reviewing the related literature. In Sect. 2.3, we present
a stylized model of consumer adoption. In Sect. 2.4, we analyze the impact of the
firm’s familiarization strategy and externality on consumer adoption and the firm’s
optimal pricing and profit. We conclude in Sect. 2.5. All proofs are provided in
Huang et al. (2018).
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2.2 Positive Externality

Consumer anxiety can be classified into four groups (2 × 2) based on positive vs.
negative externality, and whether it involves functional vs. psychological component
of utility (Huang et al. 2018). Specifically, we address the case when consumers
have subjective psychological anxiety about the new product, which can be reduced
due to the presence of certain “positive externality.” Positive externality exists not
only for networked goods, e.g., telephone networks (Katz and Shapiro 1985), but
it is also present for many non-networked products or services, when an increase
in the number of adopters increases the consumer’s subjective psychological utility
(due to reduced anxiety level) by appealing to consumers’ penchant for conformity.
Becker (1991) suggests that the pleasure from a good (e.g., food from a restaurant)
may be inherently greater when more people want to consume it. Greater number
of early adopters can influence the confidence about a product (Hellofs and
Jacobson 1999), creating a perception as a standard (Brynjolfsson and Kemerer
1996), indicating fashion trends which is important for customer subgroups who
seek conformity from peers (Abrahamson and Rosenkopf 1993; Moretti 2011), or
increasing reputation (Gabszewicz and Garcia 2008).

We focus on positive externality that enables consumers to reduce their “sub-
jective psychological” anxiety as the number of early adopters increases. However,
we do not consider the issue of social learning under which consumers can learn
about the “objective value” of the product through customer ratings or word-of-
mouth (Banerjee 1992; Bikhchandani et al. 1998; Yu et al. 2016; Papanastasiou
and Savva 2016). This allows us to examine the interaction of promotion and
externality, when both factors affect the dynamics between early adopters and late
adopters. Specifically, our equilibrium analysis reveals that, unlike the conventional
wisdom for promoting new products, for anxiety-inducing innovations with positive
externality, accelerating the speed of adoption through familiarization can be
detrimental to the firm.

2.3 The Model

A firm introduces a new innovative product with an “objective valuation” v that is
known and common to all consumers. We consider a two-period model in which
the firm seeks to maximize its profit over two periods by making the following
decisions. In period 1 (the launch period), the firm determines whether to launch
a promotion campaign to familiarize the consumers with the product, then sets
the selling price p1. In period 2 (post-launch period), after observing the realized
demand in period 1, D1, the firm sets the price p2. For ease of exposition, we scale
the firm’s discount factor to 1 and production cost to 0.
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All consumers are rational and determine the timing of their purchases to
maximize their expected utilities. In our model, a consumer’s expected utility
is governed by both “objective” and “subjective” components. The objective
component consists of the value of the product v (constant over two periods) and
prices p1 and p2. The subjective component pertains to consumers’ psychological
anxiety about adopting the innovation. The psychological discomfort is represented
as a subjective disutility. Consumers are heterogeneous in their subjective anxiety
levels (Hoeffler 2003; Wang 1997), and consumer i’s initial anxiety level xi is
uniformly distributed over [0, v]. For simplicity, we normalize the market size to
1 (i.e., demand is equivalent to proportion of consumers).3

Consumer i’s anxiety level in periods 1 and 2 depends on his or her initial anxiety
level xi and the two effects of familiarization (F) and externality (E). First, the
familiarization (F) effect occurs when the firm invests in a promotion campaign
to alleviate consumers’ anxiety level. In our model, the firm can invest K at the
beginning of period 1 so that the anxiety levels are reduced by a factor α < 1. As a
result, consumer i’s initial anxiety level reduces from xi to α · xi . No investment for
familiarization corresponds to the case when K = 0 and α = 1.4 We will refer to
the parameter α as the effectiveness of the firm’s familiarization effort.

Second, the externality (E) effect occurs because consumers’ period 2 anxiety
levels would decrease in D1, the number of early adopters in period 1. Specifically,
the anxiety level in period 1 xi will be revised to (β/D1) · xi in period 2 for any
consumer i. This simple adjustment rule captures the notion of positive externality
because the anxiety level (β/D1) · xi is adjusted downwards if the number of
adopters in period 1 satisfies D1 > β. (We use this simple adjustment rule to
capture the notion of positive externality so that the anxiety level is decreasing
in D1.5 Clearly, one can easily model the revised anxiety level in period 2 as
(β/D1 − β) · xi so that it equals ∞ when D1 = 0 and equals 0 when D1 = 1.)
Here, the parameter β ∈ (0, 1) is an exogenously given parameter and it can be
interpreted as the consumers’ reference point regarding D1 and is associated with
the characteristics of the product market environment (Oliver 1980; Thaler 1985;
Hoch and Loewenstein 1991), and the value of β can be estimated through lab
experiments.

Third, the joint familiarization and externality (F+E) effect occurs when the firm
promotes in period 1 and the positive externality takes effect in period 2. In this case,

3Our model is easily generalizable to the case where the xi is uniformly distributed over [0, R] for
any R.
4We treat K and α as parameters for ease of analysis, but α, in principle, can be a function of K .
Specifically, because our focus is on the pricing decisions, we shall consider the case when K and α

are exogenously given to simplify our analysis. However, if investment K is the focused decision,
then one needs to model K as a function of α, and the functional form and the associated value can
be estimated through lab experiments. We shall relegate this issue to a future research topic.
5It can also be adjusted upward if D1 < β, i.e., if there are few early adopters, then it can actually
raise the anxiety levels for the remaining consumers. This characterization is consistent with the
notion that consumers are more (less) willing to enter a restaurant when it is full (empty).
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Table 2.1 Consumer i’s utilities based on initial anxiety level xi , presence of F or E, and prices
p1, p2

Period 1 Period 2

F only ui = v − αxi − p1 ui = δ(v − α · xi − p2)

E only ui = v − xi − p1 ui = δ(v − (β/D1) · xi − p2)

F+E ui = v − αxi − p1 ui = δ(v − (αβ/D1) · xi − p2)

Fig. 2.1 Sequence of events

consumer i’s anxiety level is reduced from xi to αxi in period 1, and in period 2 it is
further revised to α(β/D1)xi . By assuming that each consumer has a unit demand
and consumes the product at the time of purchase, and that all consumers have a
common discount factor δ < 1 due to delayed consumption, we can summarize
consumer i’s utility for the new product in period 1 and period 2 without and with
the presence of externality in Table 2.1.

Figure 2.1 summarizes the sequence of our model. In the beginning of period
1, the firm first determines whether to launch a promotion campaign by investing
K (or not) to familiarize consumers and lower their anxiety by a factor of α ≤ 1.
It then sets price p1. The consumers decide whether to purchase in period 1 or
not by comparing their corresponding expected utilities between purchasing now,
later, or leaving the market, i.e., v − αxi − p1 ≥ max{δ(v − α(β/D1)xi − p2), 0}.
Because both future price p2 and anxiety level α(β/D1)xi are not known at the
time of decision in period 1, consumers form rational expectations about those
values to evaluate their utilities. At the end of period 1, demand D1 is realized,
which is observed by the firm and the remaining consumers. Notice that the delayed
purchasing decision in period 2 is driven not only from the anticipation of a lower
price, but also from the anticipation of a lower anxiety level, which depends on
both firm’s pricing decision and consumers’ rational expectation. In the rational
expectation equilibrium, consumer i’s period 1 expectations about p2 and D1
coincide with the realized p2 and D1. In period 2, the firm sets price p2 and
the remaining consumers use their corresponding utilities in period 2 as stated in
Table 2.1 to decide whether to purchase the product.
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2.4 Analysis

To examine the implications of familiarization, externality, and their interaction on
the equilibrium outcomes, we first examine independently the setting with familiar-
ization (F) only (Sect. 2.4.1) and externality (E) only (Sect. 2.4.2). Then, we examine
the equilibrium outcomes when both mechanisms (F+E) are present (Sect. 2.4.3),
and examine the managerial implication of their interaction (Sect. 2.4.4).

2.4.1 Firm’s Familiarization Effort (F Only)

We begin by examining the case where the firm invests K to promote familiarization
of the new product to consumers at the time of launch in period 1. Due to the
familiarization effect induced by the promotion, consumer i’s anxiety level is
reduced from xi to αxi with α < 1 throughout periods 1 and 2 as captured by
those utilities in Table 2.1.

To build intuition of our equilibrium analysis based on backward induction,
consider the case when α = 1 (i.e., no promotion). We begin by analyzing
consumers’ purchasing decision in period 2. We shall show that all consumers
will adopt the following purchasing strategy in equilibrium. Consumers with lower
anxiety levels (below a threshold τ1) will adopt the new product early (in period 1),
while consumers with higher anxiety levels will delay their decision (until period 2)
and purchase in period 2 if their anxiety levels are below a threshold, τ2.6 Because
xi is uniformly distributed over [0, v], the demand in period 1 is D1 = τ1/v.
Therefore, all remaining consumers in period 2 have an anxiety level xi ∈ (τ1, v].
For any given selling price p2, a consumer remaining in period 2 will purchase
the new product if and only if the consumer’s utility ui = v − xi − p2 > 0, i.e.,
when the anxiety level xi ≤ τ2 ≡ v − p2. In this case, the demand in period 2 is
D2 = (τ2 − τ1)/v = (v − p2 − τ1)/v.

Anticipating the demand D2 in period 2 as given above, the firm sets price p2 to
maximize its period 2 profit (π2),

π∗
2 = max

p2
{p2 · D2(p2)} = max

p2

{
p2 · v − p2 − τ1

v

}
.

Taking the first-order condition with respect to p2, we obtain the following optimal
price, demand, and profit in period 2 as a function of τ1:

6These thresholds will be determined endogenously as we determine the equilibrium purchasing
strategy.
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p∗
2(τ1) = v − τ1

2
; D∗

2(τ1) = v − τ1

2

1

v
; π∗

2 (τ1) =
(

v − τ1

2

)2 1

v
.

We next examine the period 1 problem, where the firm selects p1 to maximize its
total profit in both periods. First, observe that in a rational expectation equilibrium,
a consumer will purchase the new product in period 1 if and only if her surplus
from purchasing in period 1 is non-negative and is higher than the surplus from
purchasing in period 2, i.e., v − xi − p1 ≥ 0 and v − xi − p1 ≥ δ(v − xi − p2).
Hence, in equilibrium, a consumer with anxiety level xi = τ1 is indifferent between
purchasing in period 1 or period 2, so that v − τ1 − p1 = δ(v − τ1 − p2). By using
the fact that p∗

2(τ1) = (v − τ1)/2, the equilibrium price p1 can be expressed as a
function of τ1,

p1(τ1) =
(

1 − δ

2

)
(v − τ1). (2.1)

Second, recall that the demand in period 1 is D1(p1) = τ1/v. Because the firm’s
profit in period 2 is given as π∗

2 (τ1) = [(v − τ1)/2]2 · (1/v), the firm’s problem for
period 1 can be formulated as:

π∗ = max
p1

{
p1 · τ1

v
+ π∗

2 (τ1)

}
,

s.t. (2.1) holds.

Using (2.1) to transform the decision variable from p1 to τ1, the firm’s problem is
reformulated to

π∗ = max
τ1≤v

{(
1 − δ

2

)
(v − τ1)τ1

v
+
(

v − τ1

2

)2 1

v

}
. (2.2)

Because the objective function is concave in τ1, one can use the first-order condition
to determine the optimal value of τ1, which can in turn be used to retrieve the
equilibrium outcomes for both periods—p∗

1 , p∗
2 , D∗

1 , and D∗
2—in closed form.

This argument can be extended to the case where α < 1 by replacing xi with
αxi . When α is sufficiently small, the analysis must take into account the boundary
condition that demand across both periods is limited to 1 (D∗

1 +D∗
2 = 1), i.e., market

saturation occurs (see Huang et al. 2018 for details). We obtain the following results.

Proposition 2.1 (Familiarization Only) When the firm invests K in the familiar-
ization effort to alleviate consumer anxiety by a factor of α, the equilibrium prices
(p∗

1, p∗
2), demands (D∗

1 ,D∗
2), and total profit (π∗) can be expressed as follows: Let

α̂(δ) ≡ (3 + δ)−1(2 + √
4 − (3 + δ)(2 − δ)2/(3 − 2δ)),
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1. When α ≥ α̂(δ),

p∗
1 = v

2

(2 − δ)2

3 − 2δ
, p∗

2 = v

2

2 − δ

3 − 2δ
,

D∗
1 = 1

α

1 − δ

3 − 2δ
, D∗

2 = 1

2α

2 − δ

3 − 2δ
,

π∗ = v

4α
· (2 − δ)2

3 − 2δ
− K;

2. When α < α̂(δ),

p∗
1 = v

(
1 − α

1 + δ

2

)
, p∗

2 = (1 − α)v,

D∗
1 = 1

2
, D∗

2 = 1

2
,

π∗ = v

4
(4 − α(3 + δ)) − K.

Proposition 2.1 suggests that, when the familiarization effect is moderate (i.e.,
α ≥ α̂(δ)), the firm does not capture the whole market (i.e., D∗

1 + D∗
2 < 1) and the

optimal profit π∗ is convex and decreasing in α. However, when the familiarization
effect is strong (i.e., α < α̂(δ)), the firm saturates the market (i.e., D∗

1 + D∗
2 = 1)

and the optimal profit π∗ is linearly decreasing in α. Corollary 2.1 examines the
structural properties of the equilibrium outcomes under familiarization.

Corollary 2.1 (Structural Properties of Equilibrium Outcomes (F Only)) The
equilibrium outcomes exhibit the following characteristics. For any effectiveness
level α,

(i) the firm will reduce its selling price in period 2, i.e., p∗
1 ≥ p∗

2;
(ii) the majority of consumers will purchase in period 2, i.e., D∗

1 ≤ D∗
2 ;

(iii) the firm’s profit π∗ is decreasing in the discount factor δ, ∀α.

Corollary 2.1 reveals that, in the absence of externality, the price markdown
strategy is always optimal. This is because, due to the familiarization effect, the
level of anxiety is reduced by the same factor α in both periods, thus all remaining
consumers in period 2 will still have relatively higher anxiety level than the early
adopters who have purchased in period 1. To entice them to purchase and generate
demand in period 2, the firm has to reduce its price in period 2. Also, due to the
markdown strategy, it is intuitive that more consumers will delay their purchase until
period 2. Finally, as the discount factor δ increases, more consumers are willing
to postpone their purchasing decision until period 2 to purchase at a lower price,
resulting in lower profit for the firm.

Figure 2.2 illustrates the optimal profit π∗ with respect to α ∈ [0, 1] when the
promotion requires investment of K = 2. The firm’s optimal profit is continuous
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Fig. 2.2 The optimal firm
profit with familiarization
with respect to its
effectiveness (α) (in this plot,
δ = 0.7, α̂(δ = 0.7) = 0.6,
and K = 2)

and convex decreasing in α. The profit without promotion (K = 0 and α = 1)
is represented by the horizontal dotted line. Figure 2.2 confirms the intuition
that investing in familiarization is beneficial only when, relative to cost (K),
the familiarization effect is sufficiently strong (α sufficiently low). This intuitive
result is also consistent with broad marketing literature (Lilien et al. 1992), which
highlights the beneficial effects of consumers’ familiarization with new products
(e.g., offering free samples/trials, advertising) on firms’ profits.

2.4.2 Externality Among Consumers (E Only)

We now examine the case when only externality (E) is present. In this case, Table 2.1
shows that the initial anxiety level xi of each remaining consumer i in period 2 will
be adjusted to (β/D1)·xi . Thus, in the presence of externality, consumers may delay
their purchase decisions also in anticipation of observing a large number of early
adopters D1 and lowering their anxiety levels. When taking this positive externality
into consideration, the firm may want to lower its price in period 1 to generate higher
early demand D1, which will reduce the anxiety for those remaining consumers in
period 2. However, selling at reduced price to too many consumers in period 1 is
also not desirable because it leaves too few remaining consumers for the firm to
sell to in period 2. Therefore, the optimal pricing strategy in equilibrium is far from
obvious. By using the same approach as in the previous section, we get:

Proposition 2.2 (Externality Only) When consumers adjust their anxiety level
from xi to (β/D1) · xi according to externality at the beginning of period 2, the
equilibrium prices (p∗

1, p∗
2), demands (D∗

1 ,D∗
2), and the total profit for both periods

(π∗) can be expressed as follows: ∃β̂(δ) available in implicit form such that,
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1. If β < β̂(δ), then

p∗
1 = v(1 + δβ) − δβv2

τ ∗
1

− τ ∗
1 , p∗

2 = v − βv2

τ ∗
1

,

D∗
1 = τ ∗

1

v
, D∗

2 = v − τ ∗
1

v
,

π∗ = p∗
1D∗

1 + p∗
2D∗

2 ,

where

τ ∗
1 = max

{
vδ(1 + β)

2
, v

(
δβ

6
+ (M1 + √

M2)
1/3 + (M1 − √

M2)
1/3

)}

M1 :=
(

δβ

6

)3

+ β

4
, M2 := β

2

(
δβ

6

)3

+
(

β

4

)2

;

2. If β ≥ β̂(δ), then

p∗
1 = v

2

(
1 − δ(1 − β)

2
− (1 − β)2

4β

)
, p∗

2 = v

2
(1 − β),

D∗
1 = 1

2

(
1 − δ(1 − β)

2
+ (1 − β)2

4β

)
,

D∗
2 = 1 − β

4β

(
1 − δ(1 − β)

2
+ (1 − β)2

4β

)
,

π∗ = v

4

(
1 − δ

2
+ 2δ + 1

4
β + 1

4β

)2

.

When the consumer reference point β is not large (β < β̂(δ)), the externality
effect is favorable to the firm. This is because the anxiety level would be more
easily adjusted downwards by the remaining consumers in period 2, leading to
higher demand in period 2. In this case, the firm is able to capture the entire market,
i.e., D∗

1 + D∗
2 = 1. In the second case when β is large (β ≥ β̂(δ)), however, the

externality effect is unfavorable to the firm and the firm does not capture the whole
market, D∗

1 + D∗
2 < 1. The following corollary examines the structural properties

of the equilibrium outcomes and the impact of externality.

Corollary 2.2 (Structural Properties of Equilibrium Outcomes (E Only)) In
the presence of externality where consumers adjust their anxiety level from xi to
(β/D1) · xi at the beginning of period 2,

(i) the firm employs a markup pricing (p∗
1 < p∗

2) when β is lower and a markdown
pricing (p∗

1 ≥ p∗
2) when β is higher;
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Fig. 2.3 The optimal firm
profit in the presence of
externality with respect to
consumer reference point β

(in this plot, δ = 0.7 and
β̂(δ = 0.7) = 0.42)

(ii) the equilibrium demands are so that D∗
1 < D∗

2 when β is lower and D∗
1 ≥ D∗

2
when β is higher;

(iii) the firm’s profit π∗ is decreasing in the discount factor δ, ∀β.

Corollary 2.2 reveals that the optimal strategy hinges on the consumer reference
point β. Specifically, when the consumer reference point β is lower (i.e., when the
externality effect is favorable), the first statement reveals that markup pricing is
optimal (i.e., p∗

1 < p∗
2). This is because a low initial price p1 will generate sufficient

demand in period 1 (i.e., D1) that would reduce the anxiety of the remaining
consumers in period 2. As a result, consumers in period 2 would have higher utilities
for the product, and the firm can afford to charge a higher premium price in period
2. We obtain the opposite result when the consumer reference point β is higher.
These results are consistent with previous studies which investigate dynamic pricing
with externality (Dhebar and Oren 1985; Bensaid and Lesne 1996). Namely, if the
externality effect is strong enough, markup pricing is optimal; otherwise, markdown
pricing is optimal (Bensaid and Lesne 1996). We can interpret all other statements
in a similar manner.

Figure 2.3 plots the optimal profit in the presence of externality with respect to
the consumer reference level β ∈ (0, 1). The optimal firm profit π∗ is continuous
and convex in β, but no longer monotonic. The profit with no externality (and
no familiarization effort by the firm, K = 0 and α = 1) is illustrated again by
the horizontal dotted line. As discussed, we observe that externality is beneficial
when the consumer reference level β is lower (favorable), and detrimental when it
is higher (unfavorable).

So far, we have learned that a firm can benefit from either an effective familiar-
ization effort (lower α) as shown in Fig. 2.2 or the presence of favorable externality
(lower β) as shown in Fig. 2.3. These two observations raise the following question:
Will the firm benefit from both the familiarization and externality effects? We shall
examine this question next.
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2.4.3 Combined Effect of Familiarization and Externality
(F+E)

We now examine the case when both anxiety-mitigating mechanisms of familiar-
ization (F) and externality (E) are present. By considering the utilities as given in
Table 2.1 and by using the same approach as before, we get:

Proposition 2.3 (Familiarization and Externality) When the firm invests K in
familiarization effort and externality is present among consumers, the equilibrium
prices (p∗

1, p∗
2), demands (D∗

1 ,D∗
2), and total profit (π∗) can be expressed as

follows: ∃β̂(α, δ) available in an implicit form such that,

1. If β ≥ β̂(α, δ), then

p∗
1 = v

2

(
1 − δ(1 − αβ)

2
− (1 − αβ)2

4αβ

)
, p∗

2 = v

2
(1 − αβ),

D∗
1 = 1

2α

(
1 − δ(1 − αβ)

2
+ (1 − αβ)2

4αβ

)
,

D∗
2 = 1

4α

(1 − αβ)

αβ

(
1 − δ(1 − αβ)

2
+ (1 − αβ)2

4αβ

)
,

π∗ = v

4α

(
1 − δ

2
+ 2δ + 1

4
αβ + 1

4αβ

)2

− K;

2. If β < β̂(α, δ), then

(a) If α ≥ δ/(2 − δβ),

p∗
1 = v(1 + δαβ) − δαβv2

τ ∗
1

− ατ ∗
1 , p∗

2 = v − αβv2

τ ∗
1

,

D∗
1 = τ ∗

1

v
, D∗

2 = v − τ ∗
1

v
,

π∗ = p∗
1D∗

1 + p∗
2D∗

2 − K,

where

τ ∗
1 = max

{
vδ(1 + αβ)

2α
, v

(
δβ

6
+ (M1 + √

M2)
1/3 + (M1 − √

M2)
1/3

)}

M1 :=
(

δβ

6

)3

+ β

4
, M2 := β

2

(
δβ

6

)3

+
(

β

4

)2

(b) If α < δ/(2 − δβ), then
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)
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2 = v

(
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δ(1 + αβ)

)

D∗
2 = 0,

Proposition 2.3 is consistent with the results as stated in both Propositions 2.1
and 2.2. However, statement 2(b) of Proposition 2.3 additionally suggests that it is
optimal for the firm to accelerate adoption to capture the whole market in period 1
(i.e., D∗

1 = 1) when familiarization is sufficiently effective (i.e., when α < δ/(2 −
δβ)). The following results reveal the structural properties of equilibrium outcomes
and how familiarization and externality interact to influence them.

Corollary 2.3 (Structural Properties of Equilibrium Outcomes (F+E)) Con-
sider the case when the firm invests K to induce the familiarization effect in the
presence of externality.

(i) For any β, as α decreases, p∗
1 decreases and p∗

2 increases, shifting the optimal
pricing from markdown towards markup pricing;

(ii) For any β, as α decreases, demands in both periods D∗
1 and D∗

2 increase in
case 1 of Proposition 2.3; D∗

1 increases to 1 and D∗
2 decreases to 0 in case 2(a);

and remain unchanged at D∗
1 = 1 and D∗

2 = 0 in case 2(b);
(iii) The firm’s profit π∗ is decreasing in the discount factor δ, ∀α, β.

Unlike Corollary 2.1 stating that markdown pricing is always optimal when
externality is not present, the first part of Corollary 2.3 reveals that externality
does affect the optimal pricing strategy. Specifically, in the presence of externality,
more effective familiarization campaign decreases the optimal period 1 price (p∗

1)
and increases the optimal period 2 price (p∗

2), thereby reducing the extent of the
markdown. Furthermore, depending on the externality effect due to the consumer
reference point β, the firm’s optimal pricing strategy can switch from markdown
pricing to markup pricing. We can interpret other statements in a similar fashion.

2.4.4 Managerial Implications of Interaction Between
Familiarization and Externality

We now examine the implication of the interaction between familiarization (F)
and externality (E) on the firm’s decision to invest in a familiarization campaign,
by comparing the optimal firm profit with both familiarization and externality
(π∗(F+E)) to that with externality only (π∗(E)). By using the closed form expres-
sions of equilibrium profits as stated in Propositions 2.2 and 2.3, we are able
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Fig. 2.4 Plots of regions where additional familiarization in the presence of externality helps or
hurts firm profit for K = 2 ((a) π∗ for δ = 0.7 and (b) δ = 0.95)

to examine the conditions (in terms of α, β, and δ) under which π∗(F+E) >

π∗(E). Figure 2.4 characterizes the region in the (α, β) space where additional
familiarization in the presence of externality benefits or hurts the firm profit, for
δ = 0.7 (left panel) and δ = 0.95 (right panel).

First, observe from the upper left region in both panels that running a famil-
iarization campaign is beneficial when externality is unfavorable (i.e., when the
consumer reference point β is high) and the familiarization campaign is effective
(i.e., when α is low). This is because, when β is high, running a familiarization
campaign can reduce the initial anxiety level drastically (due to low α), which
will make familiarization campaign beneficial. Second, when this condition does
not hold, it can be seen from Fig. 2.4 that running a familiarization campaign is
detrimental to the firm in all other regions. Specifically, consider the case when
externality is favorable (i.e., when β is low), both panels reveal that, regardless
of the effectiveness of the familiarization campaign, running such a campaign is
detrimental to the firm even when the campaign is costless, i.e., when K = 0.7

Why would additional familiarization effort exerted by the firm ever backfire when
externality effect is favorable? To understand this, observe that when externality
is favorable (β is lower), the anxiety level reduces and consumer utility increases
significantly in period 2. As such, the firm can charge those late adopters a premium
price in period 2. However, if the firm runs a familiarization campaign in period 1, it
will accelerate the adoption rate (shifts demand from period 2 to period 1), leaving
fewer late adopters for the firm to charge at a premium price. This implies that, when
externality is favorable (i.e., when the consumer reference point β is low), running
a familiarization campaign in period 1 is detrimental to the firm.

7When K = 0, the two regions will be delineated by a curve resembling a horizontal line around
β = 0.2. The detrimental effect of familiarization when β is low holds even when α is a decreasing
function of K .
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2.5 Summary and Discussion

While existing literature focuses on the issue of social learning by examining the
case when consumers are unsure about the value of a new innovative product, we
consider the case where consumers are reluctant to make a purchase because they
experience psychological anxiety of adoption associated with disrupting established
routine or habit, learning the necessary steps to use the innovation effectively, or
parting from an old technology they are emotionally attached to. Such anxiety can
be mitigated by the firm’s effort to help consumers to become familiarized with the
product and by the number of early adopters, i.e., externality. We investigated how
these two effects interact and examined how they affect the firm’s optimal promotion
and pricing strategies. Unlike the conventional wisdom for promoting new products,
we find that for anxiety-inducing innovations with externality, accelerating the speed
of adoption through promotion can be detrimental to the firm. Specifically, our
equilibrium results reveal that, (1) when externality is absent, price markdown is
always optimal for the firm; however, when externality is present and becomes more
favorable, price markup is optimal; (2) the firm should carefully devise its promotion
campaign because it can be detrimental when externality is present and favorable.
Our model is based on a theoretical construct and our equilibrium results can only
serve as hypotheses for further examination. Therefore, it is of interest to test these
hypotheses via empirical studies of firms who launch innovative products or via
lab experiments to deepen our understanding about the issues of consumer anxiety
and (positive or negative) externalities. We relegate these studies to future research
studies.

Various extensions to our model are possible. Our model currently assumes a
discount factor for consumers but not for the firm. One can incorporate the firm’s
discount factor in our model to examine its impact on firm’s strategy, which may
be relevant in an entrepreneurial setting. Externalities can also be negative, for
example when consumers seek exclusivity or status-seeking behavior (Gao et al.
2016). As such, an interesting future work would be to examine the effect of
negative externality. Moreover, how should firms make decisions when the anxiety-
alleviating effects α and β are uncertain, or how the results might change when
the distribution of the anxiety level xi is altered (Johnson and Myatt 2006) can
also be interesting future enquiries. It is our hope that this chapter will stimulate
researchers to further explore consumer psychological externality and its impact on
firms’ operational decisions and strategies. We also believe that there are numerous
opportunities to examine the issue of consumer psychological externalities via
behavioral experiments.
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Chapter 3
Buyer Valuation Uncertainty and Firm
Information Provision Strategies

Jane Z. Gu and Rachel R. Chen

Abstract This chapter reviews research on buyer valuation uncertainty originated
from information asymmetry between the firm and consumers, and the firm’s
information provision strategy. Before purchase, consumers could be uncertain
about the product’s vertical attributes, i.e., quality uncertainty, and/or the product’s
horizontal attributes, i.e., fit uncertainty. For each type of uncertainty, we discuss
the firm’s inventive and instruments to disclose information, as well as other
mechanisms to reveal information that help consumers resolve such valuation
uncertainty. We then review recent literature on advance selling and opaque selling
strategies, where the firm benefits from creating consumer valuation uncertainty. We
conclude the chapter with discussions on future research directions.

Keywords Buyer valuation uncertainty · Information provision · Quality
disclosure · Fit revelation · Information asymmetry

3.1 Overview

Consumers are commonly uncertain about the value of a product prior to purchase
and such valuation uncertainty impedes their purchase intentions. Endowed with
more product information, firms may have incentive to disclose such information
to help resolve consumer valuation uncertainty originated from information asym-
metry. In this chapter, we review research works that investigate motivations and
consequences of firms’ information provision activities.
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A product can be viewed as a collection of vertical and horizontal attributes.
Vertical attributes, such as material and craftsmanship, constitute the product’s
quality, which can be measured and compared on a one-dimensional scale. Con-
sumers have homogeneous preferences for product vertical quality in the sense that
they all derive a greater consumption value from a higher-quality product, despite
their different willing to pay for the quality premium. For example, consumers
are likely to agree that a flute made with superior material and craftsmanship
has a high value, but not everyone accepts its hefty price tag. The homogeneous
nature of consumer quality preferences leads consumer valuations of a product
to converge upon firm disclosure of the product’s vertical attributes. In particular,
disclosure of a product quality higher (lower) than expected shifts all consumers’
product valuations upward (downward). As such, a firm that offers a higher product
quality has stronger incentive to disclose vertical attributes of its product. Moreover,
since quality can be measured and compared on a scale universally agreed upon,
an individual consumer can learn about a product’s vertical quality from other
consumers’ product experiences. In recent years, the growing prevalence of online
review platforms has greatly alleviated consumer quality uncertainty.

While early research has mainly focused on issues related to disclosure of
product vertical attributes, recent research has focused on issues related to disclosure
of product horizontal attributes. Horizontal attributes, such as color and flavor,
differentiate products even when they have the same quality. Consumers have
heterogeneous preferences for product horizontal attributes in the sense that they
are endowed with heterogeneous tastes, which lead to their different “fit” with a
product. For example, some consumers like red color, whereas some others like
green; similarly, some consumers like sweet flavor, whereas some others like spicy
flavor. A product that provides a good fit or a high value for some consumers
may be perceived as offering a “bad fit” or a low value for other consumers. This
heterogeneous nature of product fit preferences leads consumer valuations of a
product diverge upon firm disclosure of the product’s horizontal attributes, posing a
sharp contrast to the consequence of firm disclosure of a product’s vertical attributes.

Moreover, note that a consumer’s perceived product fit is specific to the individ-
ual consumer as well as the particular product. While the consumer perceives fit
uncertainty because of her lack of information on product horizontal attributes, the
firm also perceives uncertainty about how its product fits the consumer, owing to
its lack of information on the consumer’s taste. When the firm discloses horizontal
attributes of its product, the former type of fit uncertainty perceived by the consumer
is resolved, but the latter type of fit uncertainty perceived by the firm remains. That
is, disclosing product horizontal attributes actually puts the firm at an information
disadvantage, which suppresses its disclosure incentive. Another implication of the
idiosyncratic nature of product fit is that knowing other people’s fit with a product
does not necessarily help a consumer evaluate her own product fit. The helpfulness
of third-party reviews in resolving consumer fit uncertainty is thus limited, providing
firms’ opportunities to manipulate consumers’ fit search via marketing tools. These
complexities about consumer fit uncertainty add to the richness of this research
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area, which has drawn attention of scholars in the field of economics, marketing,
operations management, and information systems as well.

Our review focuses on buyer valuation uncertainty that originated from infor-
mation asymmetry between consumers and profit-maximizing firms. This can be
mitigated through various information provision activities of the firm. A product’s
value may be subject to factors beyond the firm’s knowledge or control. For
example, a highly rated refrigerator may arrive with a defect after a rough delivery;
a well-planned vacation may be ruined by unexpected weather conditions. In these
cases, consumer valuation uncertainty remains despite the firm’s full information
disclosure, and can be mitigated though warranty, insurance, or compensation
policies (e.g., Chen et al. 2009; Png and Wang 2010). In some institutional
purchase contexts where the firm and the buyer co-create customized products
such as production equipment, architecture design, or software systems, valuation
uncertainty arises when the buyer is unable to articulate their needs ex ante and can
be mitigated via the adoption of interactive communication tools (e.g., Terwiesch
and Loch 2004). Our discussion does not cover this type of consumer uncertainties.

In the following, we first review earlier research related to firm disclosure of
product’s vertical attributes and then move on to review more recent research related
to firm disclosure of product horizontal attributes. We then discuss the literature
on firm’s advance selling and opaque selling strategies, which create consumer
valuation uncertainty by withholding product information. We conclude this chapter
with discussions on future research directions.

3.2 Firm Disclosure of Product Vertical Attributes

The issue of consumer quality uncertainty has caught research attention since the
1970s. Akerlof (1970) considers less developed markets where truthful, credible
disclosure is prohibitively expensive and concludes that all sellers would misrepre-
sent quality. Milgrom (2008) and Dranove and Jin (2010) provide excellent reviews
of early economic literature on quality disclosure and certification. Our discussion
focuses on business contexts where information on product quality can be truthfully
and credibly communicated to end customers. We review three major streams in this
type of literature. The first stream investigates a firm’s incentive to disclose product
quality in various market structures. The second stream of literature examines direct
and indirect instruments for quality disclosure. And the third stream of literature
empirically investigates issues related to vertical quality disclosure.

3.2.1 Firm Incentive to Disclose Product Quality

(a) Monopoly Market Grossman (1981) considers a model where a monopolistic
seller knows the true quality of its product and can claim either the exact quality
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level (full disclosure), or a range of its product quality that can be verified ex post at
negligible cost. Examples of quality statements verifiable ex post at negligible cost
include “the seller is selling boxes of oranges. . . states that there are ten oranges in
a box” and “the seller states that the diamond weighs one ounce.” In this market, if
the seller claims a quality range, consumers with rational expectations will assume
that the product’s true quality is the lowest of the given range. The monopolist,
anticipating this, makes a full disclosure in equilibrium, that is, to disclose the exact
quality level of its product. Grossman and Hart (1980) and Milgrom (1981) obtain
similar results in the context of takeover bids.

Jovanovic (1982) considers a different setup where a seller does not know its
product’s true quality, but observes a private signal drawn from a distribution with
its mean being the true quality. For example, the true quality of a used car can be
the average quality of all of the car’s components, and the private signal the seller
observes is how these components function on his particular driving habit. The seller
can withhold the private signal, or disclose the signal truthfully and credibly to the
buyer after incurring a cost. In this market, disclosure can happen only if the cost
of doing so is not too high, and the seller that observes a higher quality signal has a
stronger incentive to disclose.

(b) Competitive Market Guo and Zhao (2009) considers a duopoly market where
the seller knows the true quality of its product, but not the true quality of its
rival’s product. A higher disclosure cost shifts the threshold for quality disclosure
toward the high end, and consequently elates consumers’ expectation on a product’s
quality when no vertical attribute information of the product are disclosed. This
effect suppresses the incentive of a high-quality seller to disclose quality. Moreover,
competition reduces sellers’ expected benefits from quality disclosure, further
inhibiting their disclosing incentive. While Guo and Zhao (2009) assumes that each
firm does not know its rival’s product quality, Board (2009) obtains similar results
that competition inhibits firms’ incentive to disclose quality information under the
assumption that firms know each other’s product quality.

Kuksov and Lin (2010) consider a duopoly market where consumers ex ante
are not only uncertain about the quality of competitive products, but uncertain about
their quality preferences, or how much they are willing to pay for a quality premium.
While the former type of uncertainty is specific to the product, the latter type is
specific to the consumer. Each firm endogenously chooses the quality level of its
product. A firm then decides whether to disclose the quality of its own product, and
whether to provide information that helps consumers find their quality preferences
that apply to both products. The study shows that in equilibrium, the two firms
differentiate in their product quality levels as well as the type of information they
provide. In particular, the high-quality firm is more likely to disclose its product’s
quality and the low-quality firm is more likely to provide information that helps
consumers to find their quality preferences. Extending Kuksov and Lin (2010), Lin
and Pazgal (2016) considers the case when exogenously determined product quality
enter the consumer market sequentially. The study shows that the first entrant always
discloses its product quality. A late entrant with a superior product may choose not



3 Buyer Valuation Uncertainty and Firm Information Provision Strategies 51

to inform consumers of its better quality, but instead provide information to help
consumers to find their quality preferences. On the other hand, a late entrant offering
an inferior product may wish to admit so.

(c) Distribution Channel Guo (2009) considers a distribution channel where a
manufacturer sells its product through a retailer under the wholesale price contract.
Both channel members know the true quality of the product. The manufacturer can
disclose the quality directly to end customers (e.g., through national advertising),
or leave to the retailer to decide whether to disclose (e.g., through free samples and
returns, sales assistance, in-store media). The study shows that more information
is revealed under retailer disclosure than under manufacturer disclosure. This is
because the manufacturer can, through wholesale price cuts, partially absorb the
retailer’s effective disclosure cost, which elevates the retailer’s disclosing incentive.

Guan and Chen (2017) considers a similar channel structure and examines the
case when the monopolistic manufacturer has private information about its product
quality, but has less information about the consumer’s quality preferences than
the retailer has. The study shows that the manufacturer’s decisions to disclose
information on its product quality and to acquire information on consumers’ quality
preferences interact, and together influence the retailer’s rational inference about the
product quality level and channel relationship.

3.2.2 Firm Instruments to Disclose Product Quality

Studies that investigate firm incentive to disclose quality commonly assume that
such information can be fully and truthfully communicated to end consumers.
In contrast, studies on firm’s instruments to disclose quality typically consider
a more realistic setting where quality cannot be fully disclosed through direct
communication. In this case, various signaling mechanisms such as pricing, unin-
formative advertising, warranty, and money-back guarantee can be leveraged to help
consumers differentiate a high-quality product from the low-quality one.

Starting with the pioneering work of Nelson (1974), a large body of literature
has examined how price and conspicuous advertising can help firms signal product
quality to imperfectly informed consumers (e.g., Kihlstrom and Riordan 1984;
Milgrom and Roberts 1986; Bagwell and Riordan 1991; Linnemer 2002). Warranty
has also been recognized as an effective quality signal since it is very costly for
low-quality firms to mimic the terms offered by high-quality firms (e.g., Spence
1977; Cooper and Ross 1985; Gal-Or 1989). Besides serving as a quality signal,
warranty can also be used to sort consumers based on their heterogeneous risk
preferences (Kubo 1986), provide protection against product failures (Heal 1977;
Courville and Hausman 1979; Menezes and Currim 1992; Padmanabhan and Rao
1993), or incentivize the seller to improve product quality (Prosser 1943). These four
functions of warranty are summarized in Emons (1989) and later empirically tested
in Chu and Chintagunta (2011). A related literature stream examines design and
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profitability of extended service contracts offered by retailers and/or manufacturers
beyond the basic warranty (e.g., Lutz and Padmanabhan 1995; Padmanabhan 1995;
Chen et al. 2009; Jiang and Zhang 2011).

Moorthy and Srinivasan (1995) considers a market where consumers are uncer-
tain about whether the seller is of high or low quality, and demonstrates that a
high-quality seller can effectively use money-back guarantee as a quality signal
supplemental to other quality signals such as price or uninformative advertising. The
superiority of money-back guarantee over other quality signals resides in its high
cost to the low-quality seller, which inhibits the low-quality seller from mimicking
the high-quality seller’s strategy.

Bhardwaj et al. (2008) consider a context where a firm discloses its product’s ver-
tical attributes to end consumers through a salesperson, but the limited bandwidth in
sales communication only allows the salesperson to transmit a subset of all vertical
attributes. The focal research question concerns the format of sales communication:
should the firm choose the attributes to show to consumers (i.e., seller-initiated
communication) or should it let consumers choose which attributes they want
to see (i.e., buyer-initiated communication)? While seller-initiated communication
grants the firm more control over quality disclosure, buyer-initiated communication
credibly signals that the firm has nothing to hide, or that the product has a high
quality.

Mayzlin and Shin (2011) examines a context where a firm discloses its product’s
vertical attributes to end consumers through advertising, which is nonetheless
ineffective at disclosing all vertical attributes. Consumers may conduct a costly
search for the true product quality, and the extent of search is endogenously
determined by the content of advertising. The focal research question concerns the
format of advertising: Should the firm use informative advertising that emphasizes
product vertical attributes or uninformative advertising that makes vague claims (or
no claims) about product vertical attributes? Compared to informative advertising,
uninformative advertising motivates consumers to search for the true quality
themselves, thus leading to a more accurate quality valuation ex ante. A high-
quality firm, thus, has a stronger incentive than a low-quality firm to invite consumer
search through uninformative advertising. As such, uninformative advertising, when
coupled with consumer search, can be used by a monopolistic firm to signal its high
quality.

3.2.3 Empirical Research on Firm Quality Disclosing
Strategies

Early empirical research on firm quality disclosing strategies focuses on testing the
signaling effect of uninformative advertising. Tellis and Fornell (1988) uses PIMS
(Profit Impact of Market Strategies) dataset to examine how advertising spending
affects product quality measured with the difference between the sales percentage
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of products superior to those of the rivals and products inferior to. Caves and Greene
(1996) and Moorthy and Zhao (2000) construct brand quality measurement using
Consumer Reports survey and examine how brands’ advertising spending affects
their quality scores. Similar investigations were conducted by Thomas et al. (1998)
by using data from the US automobile industry and Horstmann and MacDonald
(2003) by using data from compact disc players industry. Some researchers use
experiments to investigate how manipulated conditions of advertising spending
affects participants’ perceived product quality (e.g., Kirmani and Wright 1989;
Kirmani 1990; Moorthy and Hawkins 2005). Animesh et al. (2010) test the
advertising-quality relationship by using the online paid search advertising data
(e.g., Animesh et al. 2010).

Recent empirical research has focused on examining quality uncertainty in online
markets. A product sold online can be viewed as a bundle of the core product (i.e.,
the product’s physical attributes) and the extended product (i.e., service provided by
the online seller), and quality uncertainty can arise from either. While theoretical
studies typically treat the bundled product as a whole, empirical research has tried
to distinguish the two sources of quality uncertainty. In online markets, consumer
uncertainties about the vertical attributes of the core product often come from the
difficulty for the seller to describe the product’s physical attributes. This uncertainty
is more severe for used goods, whose wearing conditions can vary significantly.
Using data from the motor vehicle industry and the computer industry, Heiman and
Muller (1996) shows that the number and the length of product demonstration affect
product acceptance by mitigating consumers’ perceived product quality uncertainty.

Consumer quality uncertainties about the extended product concern two roles
the seller fulfills: providing product information and delivering products. Prior to
purchase, consumers are likely to be uncertain about the vertical quality of the seller,
particularly for unfamiliar ones, such as whether the seller would intentionally
misrepresent the product to increase sales or whether the seller will deliver
the wrong product due to negligence or incompetence. In online markets, such
uncertainty is exacerbated, because buyers are unable to infer seller characteristics
by observing social cues from personal interactions or body language (Gefen et al.
2003). On the other hand, the online market provides opportunities to mitigate seller
quality uncertainty through information systems such as online feedback ratings
(e.g., Ba and Pavlou 2002; Dellarocas 2003), user-generated textual comments (e.g.,
Ghose and Ipeirotis 2011; Pavlou and Dimoka 2006), third-party escrows (e.g.,
Pavlou and Gefen 2004), and product diagnostic tools (Jiang 2007).

Some researchers compare the effect of quality uncertainty in the core product
and the extended product. Ghose (2009) examines used goods trading data in multi-
ple product categories and shows that both seller-related (e.g., seller characteristics)
and product-related (e.g., condition of used cars) quality uncertainty lead to adverse
selection, which does not completely disappear even with mechanisms such as
seller reputation feedback and product quality disclosure. Dimoka et al. (2012)
examine auction data on used cars and shows that, compared to seller-related quality
uncertainty, product-related quality uncertainty has more adverse effect on price
premium. The study also shows that both types of uncertainties can be reduced by
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IT-enabled solutions such as diagnostic product descriptions and third-party product
assurances.

3.3 Firm Strategy to Disclose Product Horizontal Attributes

Lewis and Sappington (1994) is one of the earliest works that recognize the
heterogeneous consumer valuations for product horizontal attributes and investigate
firm’s incentive to help consumers to learn their idiosyncratic fit with a product.
Research on firm strategies to disclose product’s horizontal attributes has developed
rapidly in recent years accompanying the growing popularity of online third-
party reviews. It is generally believed that it has effectively alleviated consumers’
uncertainty about quality. The efficacy of online reviews in resolving consumers’
quality uncertainty resides in consumers’ homogeneous preferences for product
quality, which allows different consumers to measure and compare quality on a scale
universally agreed upon. A consumer can conveniently infer a product’s quality
level from its “valence score” or average review rating. Moreover, the “valence
score,” as a numerical quality indicator, is easy to understand and process, which
encourages consumer usage of the score. In contrast, consumers’ heterogeneous
preferences for a product’s horizontal attributes make it difficult for an individual to
infer her own fit from others’ perceived fit. As such, consumer fit uncertainty persists
despite the presence of third-party reviews. Moreover, compared to product vertical
attributes such as material and craftsmanship, product horizontal attributes such as
color and style are often hard to describe or quantify, making such information
hard to communicate. Commonly, a personal inspection is necessary to find out
the consumer’s true fit with a product.

Below we review three main streams of this literature. The first stream examines
a firm’s incentive to disclose fit-revealing information in various market structures.
The second stream of literature investigates direct and indirect instruments that
help disclose product horizontal attributes. Finally, the third stream of literature
empirically explores issues related to firms’ fit-revealing strategies.

3.3.1 Firm Incentive to Disclose Product Horizontal Attributes

(a) Monopolistic Market Lewis and Sappington (1994) considers a model where
consumers are ex ante identical in their expected valuations on a monopolistic firm’s
product, and knowledge of product horizontal attributes leads to differentiation
in consumer product evaluations. Disclosing product horizontal attributes creates
“targeting” opportunities for the firm, allowing it to sell to a segment of the market
at a price higher than the average valuation. Nonetheless, the firm has to abandon
the segment of market with below-than-average valuations. This tension between
pursuing a higher margin or a larger demand is at the core of the firm’s incentive
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to disclose product horizontal attributes. The firm’s optimal strategy is either not
to provide any information, which ensures the full advantage of the demand-
oriented strategy, or to provide full information, which ensures the full advantage
of the margin-oriented strategy. Johnson and Myatt (2006) models differentiation in
consumers’ product valuations as the result of a rotation of the demand curve, which
can be induced by marketing mix variables such as advertising and product design.
Echoing Lewis and Sappington (1994), the study shows that a monopolistic firm
obtains maximized profit when differentiation in consumers’ product valuations is
either very high to facilitate an effective margin-oriented niche strategy, or very low
to facilitate an effective demand-oriented mass-market strategy.

Bar-Issac et al. (2010) deviate from Lewis and Sappington (1994) and Johnson
and Myatt (2006) by considering a market where consumers are ex ante hetero-
geneous in their expected valuations of a monopolistic firm’s product, with one
consumer segment exhibiting consistently higher willingness to pay for the same
fit level, than the other consumer segment. Prior to purchase, consumers find their
true fit with the product through a costly inspection, and the firm can manipulate
the inspection cost to induce inspection by none, some, or all consumers. The study
shows that an intermediate information disclosure strategy can be optimal. It would
induce only consumers with low willingness to pay to inspect, but not those with
high willingness to pay. That is, the intermediate information disclosure strategy
is used as a non-price means to discriminate between different consumer types.
Bhargava and Chen (2012) considers a similar setup where ex ante the smaller
consumer segment has consistently higher willingness to pay for the same product
fit level than the larger segment. The firm can disclose information on its product’s
horizontal attributes, which allow all consumers to find their fit with the product, or
withhold such information, which will leave all consumers’ fit uncertain. The study
shows that full disclosure is profitable when consumer heterogeneity in willingness
to pay ex ante is moderate, but non-disclosure is profitable when such heterogeneity
is very low or very high. Lahiri and Dey (2018) considers versioning as a way to
disclose product fit information in the context of information goods. The study
shows that if a fraction of consumers is fully aware of their true valuations ex
ante, information provision through versioning can be more profitable than keeping
consumers in the dark.

Chen and Xie (2008) considers a monopolistic firm’s strategy to offer either
partial or full information on product horizontal attributes when consumers never
buy with null fit information and can acquire additional attribute information
from third-party reviews. The study assumes the existence of a segment of novice
consumers who can only process information provided by third-party reviews but
not information provided by the seller, and shows that the availability of third-
party reviews may reverse the firm’s optimal disclosure strategy. In particular,
without third-party reviews, a firm with a low production cost enjoys a high
margin and has incentive to pursue a demand-oriented strategy by disclosing only
partial information. Third-party reviews, however, forces the firm to switch to a
margin-oriented strategy and disclose full information. On the other hand, without
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third-party reviews, a firm with a high product cost pursues a margin-oriented
strategy by disclosing full information. Third-party reviews, however, help inform
novice customers, which allows the firm to switch to a demand-oriented strategy
and disclose only partial information.

Sun (2011) models a product as containing both vertical and horizontal attributes
and examines how a monopolistic firm’s fit disclosure strategy is moderated by its
product quality level. The study shows that when the product quality level is high,
the firm enjoys a high margin and optimally pursues a demand-oriented strategy
through non-disclosure. On the other hand, when the product quality level is low, the
firm collects a low margin and optimally pursues a margin-oriented strategy through
full disclosure. Anderson and Renault (2013) obtains similar results in a market
where consumers are uncertain about a product’s quality and price, in addition to
being uncertain about the product’s horizontal attributes.

A set of research studies examines the sustainability of fit disclosure as a perfect
Bayesian equilibrium outcome in an incomplete information game. Anderson and
Renault (2006) considers a model where consumers are uncertain about not only
the horizontal attributes, but the price of a monopolistic seller’s product, and shows
the firm should never fully disclose the product’s horizontal attributes without
disclosing its price. Koessler and Renault (2012) considers a general modeling
framework where the monopolistic firm has perfect and private information about
the product’s attributes, which can be vertical and horizontal, and the single buyer
has perfect and private information about her own taste. Their study shows that
full disclosure is always an equilibrium when product and consumer types are
independently distributed. Çelik (2014) characterizes conditions under which a
monopoly seller fully reveals the location of its product on the consumer preference
spectrum when an individual consumer’s preference is privately known only to
herself.

(b) Competitive Market In a competitive market, disclosing product horizontal
attributes allows a firm to create product differentiation from its competitor, which
alleviates price competition. Firms that occupy different competitive status demon-
strate different incentives to disclose product horizontal information. Anderson and
Renault (2009) considers two competing firms that offer two products differentiated
in both vertical and horizontal attributes. Consumers have full knowledge about the
two products’ quality and price, but are uncertain about their fit with either product.
A firm can advertise its own products’ horizontal attributes to end customers, and
can also disclose its rival’s horizontal attributes through comparative advertising. A
key finding is that when the quality difference between the two products is large,
the high-quality firm never discloses any information; the low-quality firm does not
disclose either, if comparative advertising is banned, but otherwise will disclose the
fit information about its own product as well as that of the rival product.

Gu and Xie (2013) also considers a setting where consumers face the choice
between two competing products with differentiated vertical quality, as well as
differentiated horizontal attributes. A consumer’s perceived fits with the two prod-
ucts are independent. A firm can help resolve consumers’ fit uncertainty regarding
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its own product through costly marketing activities (e.g., offering free samples or
proving free trials), but such activities do not help resolve consumer fit uncertainty
regarding the other product. A key finding is that the firm offering the high-quality
product implements fit-revealing activities with greater intensity than its low-quality
rival, if both products’ qualities are sufficiently high and their quality difference is
small. This result poses an interesting contrast to the finding in the monopolistic
market where the low-quality firm has a stronger incentive to disclose fit. Jing (2016)
considers a model where consumers have knowledge about the quality as well as
price of two competing products, but can only find their fit with the product through
a costly inspection. Each firm determines the level of customer learning investments
(CLI), and a higher investment induces more consumers to inspect its product prior
to purchase. In a fully covered market, the firm that makes a larger CLI enjoys a
higher demand as well as a higher price. Echoing Gu and Xie (2013), the study
shows in equilibrium the firm with a greater relative production efficiency invests
more in CLI to facilitate customer fit search.

Boleslavsky et al. (2017) model competition between an innovative firm that
offers a new product with unknown horizontal attributes and an established firm
that offers a product for which the consumers have full information. The result
shows that the innovative firm benefits from fully disclosing horizontal attributes
of its product through demonstration to resolve consumer fit uncertainty if pricing
policy is flexible, but partial disclosure is optimal if the price decision has to be
made prior to the demonstration decision.

(c) Distribution Channel Hao and Tan (2017) considers a vertical channel com-
posed of a supplier and a retailer and demonstrates that the format of channel
contract affects channel members’ fit-disclosing incentive. Under the agency pricing
contract, the revenue sharing mechanism leads the supplier to benefit from more fit
disclosure but the retailer to suffer from it. On the other hand, under the wholesale
pricing contract, potential misalignment of channel members’ interests regarding
fit disclosure disappears, if the demand is linear. If the demand is log-concave and
derived from common valuation distributions like normal or logistic distributions,
however, misalignment reappears, with the retailer benefiting and the supplier
suffering from more fit disclosure.

3.3.2 Firm Instruments to Disclose Product Horizontal
Attributes

Studies that investigate firm incentive to disclose product horizontal attributes
typically focus on disclosure instruments implemented by manufactures, such
as advertising and sampling. In business reality, retailers that carry an array of
horizontally differentiated products can leverage various instruments to manipulate
consumers’ fit knowledge ex ante. As such, the literature on fit disclosure instru-
ments has merged into the retailing literature.
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(a) Disclosing Product Horizontal Attributes Through In-Store Sales Commu-
nication Wernerfelt (1994) considers a model where a seller offers two products
with differentiated horizontal attributes to a fit-uncertain buyer and shows that
a knowledgeable salesperson can effectively and truthfully match the customer
with the product that suits her needs through a “dialogue” or an interactive
communication with the buyer. Ofek et al. (2011) find that a monopolistic retailer
that sells through both online and offline channels offers less sales assistance in
its offline store to match consumers with suitable products, than in the case it
operates only an offline channel, because the existence of the online store reduces
consumer traffic to the physical store. In a competitive market, however, a dual
channel retailer may offer more in-store sales assistance than a pure offline retailer
to combat competition. Gu and Liu (2018) extends Wernerfelt (1994) and models
a retailer that sells through a salesperson to end consumers two horizontally
differentiated products offered by two competing manufacturers. The study shows
that the retailer has incentive to demotivate its salesperson from advising consumers,
if the effectiveness of such sales advising is too high or too low in helping consumers
learn their true fit with products.

(b) Disclosing Product Horizontal Attributes Through Manipulating Con-
sumer In-Store Fit Search Gu and Liu (2013) considers a retailer that sells
horizontally differentiated products offered by competing upstream manufacturers
and examines the retailer’s optimal in-store display decision: whether to display
competing products in the same location so that consumers can inspect multiple
choice alternatives all at once, or display them in distant locations so that consumers
have to inspect one product first and then decide whether to incur a travel
cost to inspect another product. The study finds that the former display format
is more profitable for product categories with overall high fit probability (e.g.,
home appliances), whereas the latter display format is more profitable for product
categories with overall low fit probability (e.g., apparel).

Branco et al. (2016) model how consumers evaluate their fit with a product
offered by a monopolistic seller through a sequential search on the products’
multiple attributes. Consumers check one attribute at a time after incurring a search
cost, learn about the attribute on which the seller provides information, and then
decides whether to check more attributes or make a choice decision without further
search. The seller decides on which attributes to provide information, but does not
know the order of consumers’ attribute searches. The study shows that the seller’s
optimal strategy is to provide information on an intermediate number of attributes.
Providing too much information makes the search less informative, and providing
too little information makes consumers believe there is less positive information
about the product; both strategies will deter consumer search and lower seller profit.

Gu and Tayi (2017) considers a retailer that operates both an online and an
offline store and aims at maximizing the omni-channel profit. The retailer carries
horizontally differentiated products, and decides whether to sell the products
through both channels, or through the online channel only. Through an in-store
inspection, consumers learn about their fit with the product offered at the store
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offline, and make inferences about their fit with the product offered through the
online store only. The study shows it can be profitable for the retailer to offer the
full assortment through the online store, but only partial assortment through the
offline store, and that the retailer benefits more from selling higher-quality or higher-
demand products through the online store only.

(c) Mitigating Fit Uncertainty Through Product Return Policy When con-
sumers have difficulty evaluating their fit with a product prior to purchase, retailers
often use product return policies to mitigate fit uncertainty. Davis et al. (1995)
demonstrate that money-back guarantee can be used to reduce the perceived risk
of fit-uncertain consumers and enhance their willingness to pay. As opposed to the
warranty, money-back guarantee allows consumers to return a product for a full
refund, even if the product has no quality defect. Shulman et al. (2009) indicate that
a higher restocking fee will reduce fit-uncertain consumers’ purchase intention and
a firm in devising the optimal level of restocking fee should consider this impact
in addition to the recouping cost associated with product returns. Heiman et al.
(2001) show that money-back guarantee and demonstrations can be complements
or substitutes in revealing product horizontal attributes.

Gu and Tayi (2015) examines a pure online seller’s optimal return policy in
a context where consumers, uncertain about their fit with a product ex ante if
finding a misfit after purchase, can choose between making a costly return or
self-mending to assure a proper fit. The study shows that an online retailer can
benefit from tightening the return policy and maintaining a reasonable return cost for
consumers, because such a policy motivates consumers to self-mend a misfit product
and consequently eases the firm from the burden of handling returns. Moreover,
accompanying the tighter return policy, the firm charges a lower price, which can
enhance consumer surplus.

Shulman et al. (2015) consider a model where a consumer’s perceived ex post
utility of a product is reference-dependent on a consumer’s ex ante expectation
and makes product return decisions based on the perceived ex post utility, rather
than the true product value. In this case, ex ante fit uncertainty leads to consumers
with true high product valuations to form low ex ante expectations, which elevates
their perceived ex post utilities and reduces their return tendency. On the other
hand, pre-purchase fit disclosure increases these consumers’ ex ante expectation
and may increase product returns. These theoretical insights are further supported
by controlled behavioral experiments as well as econometric analysis of archival
data.

(d) Revelation of Product Horizontal Attributes Through Third-Party Reviews
While the valence score of third-party reviews reveals product vertical quality,
the text content of reviews often provides useful information about a product’s
horizontal attributes. As such, research that investigates the impact of third-party
reviews in revealing product horizontal attributes typically also considers the impact
of such reviews in revealing the product quality. Kwark et al. (2014) consider a
distribution channel where two competing manufacturers sell through a common
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retailer, and shows that reviews that disclose products’ horizontal attributes by
enhancing product differentiation soften manufacturer competition and hurt the
retailer. On the other hand, reviews that disclose products’ qualities by reducing
product differentiation, intensify manufacturer competition and benefit the retailer.
Extending this work, Kwark et al. (2017) further show that a retailer can benefit from
third-party reviews on product horizontal attributes by adopting the commission
scheme, and can benefit from third-party reviews on product vertical attributes by
adopting the wholesale pricing scheme, rather than the commission scheme.

Jiang and Guo (2015) examines a monopolistic firm’s optimal design of a review
system. Hosting a review system facilitates disclosure of product vertical attributes,
which is optimal when the product quality is sufficiently high. Moreover, offering
“granular reports” that review specific product attributes facilitates disclosure of
product horizontal attributes, which is profitable when misfit significantly reduces
in a consumer’s willingness to pay. Loginova and Mantovani (2015) examines
competing firms’ incentive to join an online review aggregator’s website (e.g.,
tripadvisor.com), which expands consumer demand by reducing fit uncertainty but
intensifies price competition.

Li (2017) considers a monopolistic online seller that offers two products
differentiated in both vertical and horizontal attributes. The menu page shows the
list of products, and a consumer has to click a link to go to an individual product’s
page, where detailed third-party reviews are displayed and consumers can learn
both vertical and horizontal attributes of the product. The focal question is whether
the online seller should show the products’ aggregated valence score in the menu
page to disclose product quality before consumers check individual products. The
result shows that not showing the quality score can be optimal when consumers have
highly heterogeneous preferences for the low-quality product’s horizontal attributes.

3.3.3 Empirical Research on Firm Strategy to Mitigate
Consumer Fit Uncertainty

Empirical research has generally supported the theoretical predictions that consumer
fit uncertainty adversely affects firm profit and that firms’ fit disclosing strategies
help alleviate such a problem. A stream of research examines how consumers’ fit
uncertainty affects their purchase intentions. In an empirical study of hundreds of
product categories, Kim and Krishnan (2015) show that consumer fit uncertainty
inhibits online purchase of higher-priced products, and that accumulated online
shopping experience will encourage consumers to purchase more of the cheaper
products. The study also shows that online sellers can mitigate consumer fit
uncertainty using technology such as digitized video commercials. Using a series
of randomized field experiments, Gallino and Moreno (2018) shows that offering
virtual fit information in online apparel retail increases conversion, basket sizes,
average price of purchased products, and revisits to the site, and also reduces

https://tripadvisor.com
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fulfillment costs related to returns and home try-ons. These benefits are more
pronounced for products that are more expensive or available in more sizes.
Moreover, virtual fitting technology increases customer engagement and loyalty,
resulting in a spillover effect for products beyond those available for virtual fitting.
Ball et al. (2018) use quasi-experimental methods to assess the effect of opening
showrooms for a business that operates as an online-only business. The result shows
that opening showrooms has a positive impact on the overall demand, and results in
spillovers between the online and the offline channels. This finding is consistent
with the notion that offline channels are more effective at providing product fit
information than online channels (e.g., Lal and Sarvary 1999).

Another stream of empirical research examines the impact of consumer fit
uncertainty on product returns. Consumers who buy a product under ex ante fit
uncertainty are likely to make a return if finding a misfit ex post, which causes a
return handling cost for the firm. Using consumer survey data from eBay, Hong and
Pavlou (2014) shows that product fit uncertainty has more adverse effect on product
returns than product quality uncertainty. The study also shows online product
forums are more helpful in alleviating product fit uncertainty, whereas website
media on product pages are more effective in mitigating product quality uncertainty,
and both activities reduce product returns. Using a transaction level dataset, Sahoo
et al. (2017) demonstrate that the availability of product reviews online leads to
higher sales and fewer product returns.

Some empirical studies find that a firm’s effort to provide information on product
horizontal attributes can have a negative impact on that firm’s profit. Jain et al.
(1995) show that sampling might have a negative impact on the firm’s profit, if
the firm cannot control the type and number of consumers who receive samples.
Bawa and Shoemaker (2004) points out that offering samples may cannibalize the
sales of products with low repurchase rate. Shulman et al. (2015) demonstrate, with
both theory and field experiments, that fit-revealing information provided before the
purchase can actually increase decision reversals. Arora et al. (2017) show that the
practice of offering free versions of paid apps is negatively associated with adoption
speed of apps, and the association is stronger for hedonic apps and in the later life
stages of paid apps. This result is consistent with the literature that offering free
versions of information goods is suboptimal (Bhargava and Choudhary 2001, 2008;
Jones and Mendelson 2011), especially when consumer uncertainty is high and price
is low (Lahiri and Dey 2013).

3.4 Firm Strategy to Create Consumer Valuation
Uncertainty

While the information disclosure literature focuses on incentive and consequences
of firm activities that help resolve consumer valuation uncertainty, related literature
on advance/opaque/probabilistic selling examines incentives and consequences of
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firm’s activities that create consumer valuation uncertainty in product transactions.
These two streams of literature can be viewed as two sides of the same coin that
address the same question: How much product information the firm would like its
consumers to have prior to purchase?

Shugan and Xie (2000) and Xie and Shugan (2001) study advance selling
strategies, under which a firm sells its product in advance of actual time of
consumption. When consumers’ utilities from a product or service (such as air
travel, hotels, and cruises) depend on their idiosyncratic consumption state such as
mood, health, and personal work schedule, the separation between the (advance)
time of purchase and the time of consumption results in consumer valuation
uncertainty at the purchase time. Because of such uncertainty, consumers make
their purchase decisions in the advance period based on their expected valuations,
which tend to be more homogeneous. In contrast, their valuations become more
heterogeneous at a later time period after their idiosyncratic consumption states
are realized, which makes it harder for the firm that lacks capability of conducting
direct price discrimination to extract consumer surplus. The key insight that more
information leads to heterogeneous consumer preferences is consistent with Lewis
and Sappington (1994) and the literature on firm’s strategy to disclose product
horizontal attributes ever since. In a more recent study, Yu et al. (2015) examine
the effects of interdependent consumer valuations and seller’s capacity on the firm’s
advance selling decisions.

While advance selling is essentially a pricing strategy that takes advantage
of consumers’ valuation uncertainty in the advance time, opaque selling and
probabilistic selling add uncertainty to consumer valuations by withholding product
information. Under opaque selling, one or more product attributes are deliberately
hidden from the buyer until payment has been made. Under probabilistic selling,
a firm creates a “virtual” product or service, i.e., a probabilistic good that offers
consumers a probability of getting any one of a set of multiple distinct items
(Fay and Xie 2008, 2010, 2015; Fay et al. 2015). While the potential choice set
is well defined under probabilistic selling (five identical shirts that only differ in
color), it may not be as clear under opaque selling (a 3-star hotel in San Francisco
downtown district). Theoretically, these two concepts are similar and sometimes
indistinguishable in the literature (Huang and Yu 2014); we will treat these two
terms interchangeable in our discussion.

Under opaque selling, the undisclosed attributes introduce an element of “dam-
aged goods” to the opaque product, which allows the firm to segment the market
based on consumers’ tolerance level for uncertainty. In many markets, consumers
differ in their tolerance level towards product uncertainty. For example, when
shopping for hotel rooms, business travelers are likely to have specific location
requirements and thus favor hotels with known addresses (i.e., the transparent
product) despite its high price, whereas leisure travelers are likely to be more flexible
in location choices and thus favor hotels with addresses undisclosed (i.e., the opaque
product) as long as the price is sufficiently low. Offering a hotel room with hidden
location thus allows the intermediary to price discriminate between buyers with little
tolerance for uncertainty and hence low price sensitivity (e.g., business travelers)
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and those with high tolerance of uncertainty and hence high price sensitivity (e.g.,
leisure travelers). This strategy was first introduced by online travel agencies (e.g.,
Priceline and Hotwire) for selling leftover capacity for airlines and hotels and has
gained popularity among consumers and service providers (Post and Spann 2012).

Jiang (2007) and Fay (2008) examine the incentive for a monopoly firm to
sell opaque or probabilistic goods. Shapiro and Shi (2008) shows that the ability
to price discriminate allows a firm to profit from offering an opaque product,
even in a competitive market where the opaque feature virtually erases product
differentiation and thus intensifies competition. Fay (2008) considers a setting where
two firms use a common intermediary to sell the opaque product and find that an
opaque product magnifies price competition, if there is little brand-loyalty in an
industry, and curtails price competition, if there is significant brand-loyalty in the
industry. Another motivation for firms to adopt opaque selling is that it helps reduce
supply–demand mismatches, especially in industries with little flexibility in supply,
e.g., airline, hotel, and car rental industries. Gallego and Phillips (2004) examines
the optimal design of a probabilistic product to balance the benefit of increasing
overall demand and enabling better capacity utilization at the cost of potentially
cannibalizing high-fare demand for specific products. Jerath et al. (2010) consider
an opaque intermediary who sells last-minute capacity for competing providers
facing stochastic demand for the aggregate market. Chen et al. (2014) compare
posted-price and Name-Your-Own-Price (NYOP) as two pricing mechanisms to
dispose of excess inventory in an opaque distribution channel. In this stream of
research, the leftover inventory in the opaque channel is subject to the demand
shock in the direct channel, which adds another layer of availability uncertainty
to the opaque product. Huang et al. (2017) highlight the impact of inventory and
time on equilibrium prices, expected profit, and channel strategy in the presence
of an opaque channel. Cai et al. (2013) consider a retailer’s strategy of mixing
products from competing suppliers to generate a probabilistic good and shows that
introducing the probabilistic good is beneficial for the channel members. Additional
benefits of opaque selling include softening price competition (Shapiro and Shi
2008). Recently, Huang and Yu (2014) shows that opaque selling may soften price
competition and increase the industry profits as a result of consumer bounded
rationality, providing a behavioral rational for opaque selling.

Whereas most of the opaque selling literature focuses on withholding horizontal
attributes, a growing body of literature examines opaque selling with vertically
differentiated products. Biyalogorsky et al. (2005) consider the airline industry
where some firms offer tickets that can be upgraded to higher-class, depending on
the availability of higher-class products at the service delivery time, and characterize
conditions under which such strategy is profitable. Zhang et al. (2015) show that
probabilistic selling in quality-differentiated markets can be profitable by disposing
excess capacity, even when quality levels are endogenously determined. Halbheer
et al. (2018) show that deliberately randomizing service quality can benefit the
provider and society because heterogeneity in customer damages from service
failures allows the provider to profit from selling damage prevention services or
offering compensation to high-damage customers.
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3.5 Future Research Directions

In recent years, researchers’ focal interest has shifted from issues related to quality
disclosure to issues related to fit revelation. This shift is partially driven by the
prevalence of third-party reviews online. Nevertheless, quality uncertainty for
services remains a challenge. Moreover, compared to quality uncertainty, consumer
fit uncertainty appears to be a much richer construct, determined not only by a
product’s horizontal attributes known to the firm, but also consumers’ idiosyncratic
tastes privately known to themselves. Such complexities of consumer fit uncertainty
provides abundant research opportunities.

3.5.1 Service Quality Uncertainty

Consumers’ quality uncertainty about a standardized product or service can be
effectively mitigated when they learn about the product/service’s vertical attributes
from the seller or other consumers. Interestingly, quality uncertainty remains a
concern for professional services such as car repair, real estate sales, and health
care. Consumers’ needs for professional services are often highly idiosyncratic,
causing high variation in both service procedure and outcome. For example, among
patients with the same disease, some may have pre-existing conditions that interfere
with the treatment. In addition, the completion of a professional service typically
involves not only the service provider, but the customer and sometimes third-party
players who could potentially bring more shocks to the service quality. For example,
not every patient follows the doctor’s advice closely, and a dentist’s service quality
may depend on which nurse is assisting. Moreover, the complexity of professional
services often makes it difficult for consumers to evaluate a service’s true quality
and consumers may form false quality perception based on cosmetic aspects of the
service process. For example, a consumer may believe a car repair service is of
high quality because of a free car wash, or believe a dentist provides high-quality
service because of her pleasant attitude. In a recent work, Liu et al. (2017) show
that it is inappropriate to interpret reviews for professional services the same way as
reviews for commodity. Moreover, deadweight loss in social welfare can occur if the
service provider is allowed to select customers to ensure favorable reviews. Future
research can investigate mechanisms that facilitate disclosure of product quality in
the professional service context.

3.5.2 Uncertainty in Consumer Fit Preferences

While consumers always prefer a higher product vertical quality, their preferences
for a product’s horizontal attributes may be context-dependent and time-variant.
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For example, a consumer’s preference for fashion products may well depend on
her mood. Even if the firm discloses its product’s horizontal attributes prior to
purchase, the consumer may still find a misfit after purchase due to changes in her
mood. This instability of consumer fit preference is more pronounced for hedonic
products than for utilitarian products. Moreover, consumers may be unaware of
their true preferences for product horizontal attributes at the point of purchase.
For instance, when booking a vacation package to Amazon rainforest, a consumer
knows that a package that offers more events is of better value. Having never visited
a rainforest, however, the consumer may have trouble evaluating which events
she is likely to enjoy. Reading descriptions and reviews beforehand cannot fully
eliminate pleasant surprises or disappointments. This uncertainty in consumers’
preferences for product horizontal attributes is more severe for experience products
than for search goods. In these cases, disclosing product horizontal attributes cannot
fully resolve consumer fit uncertainty. Firms may use interactive communication
tools to learn about consumers and predict their future preferences. Firms may
also adopt new technologies such as virtual reality to help consumers learn about
their own tastes. Gu and Tayi (2015) considers a firm’s strategy to offer a product
that can be customized after purchase to ensure a proper fit. Alptekinoğlu and
Ramachandran (2018) examines a dynamic model where consumer preferences
may change across time periods and identifies conditions under which offering
a consumer-customizable product is more valuable than offering a portfolio of
standard products. We encourage future research to explore innovative marketing
tools that can be used to alleviate consumer uncertainty on fit preferences.

3.5.3 Interactions Between a Firm’s Fit Disclosure Strategy
and Other Strategic Decisions

Consumers’ knowledge about product attributes changes their information set
and may thus affect how they respond to firm strategies on distribution channel,
advertising, product line design, etc. Deng et al. (2017) show that a firm’s strategy
to disclose product horizontal attributes can be complementary or substitutable with
advertising and can also be influenced by the firm’s quality provision decision. We
encourage future research that explores interactions between information revelation
and other marketing mix strategies.

The wide adoption of online social media platforms encourage consumers
to seek information from their social connections in evaluating a product’s fit.
For instance, when shopping for vacation packages, consumers are likely to pay
more attention to recommendations from their friends than anonymous reviews on
Tripadvisor.com. As such, the structural properties of consumer social network can
impact consumers’ ex ante product valuations. Fainmesser et al. (2018) consider
a two-period model where first-period consumers learn about product fit through
advertising and second-period consumers learn about product fit through first-period

https://Tripadvisor.com
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buyers’ product reviews. The study shows that the firm has a greater incentive to
advertise in the first period when the social connections between the first and the
second-period consumers exhibit greater homophily. We encourage future research
on how a firm can leverage the power of social media to assist consumers’ fit search.
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Chapter 4
Optimizing Promotions for Multiple
Items in Supermarkets

Maxime C. Cohen and Georgia Perakis

Abstract Promotion planning is an important problem for supermarket retailers
who need to decide the price promotions for thousands of items. One of the
key reasons retailers use promotions is to increase sales and profits by exploiting
relations among the different items. We formulate the promotion optimization
problem for multiple items as a nonlinear Integer Program (IP). Our formulation
captures several business requirements, as well as important economic factors such
as the post-promotion dip effect (due to the stockpiling behavior of consumers)
and cross-item effects (substitution and complementarity). Our demand models
are estimated from data and are typically nonlinear, hence rendering the exact
formulation intractable. In this chapter, we discuss a class of IP approximations
that can be applied to any demand function. We then show that for demand models
with additive cross-item effects, it is enough to account for unilateral and pairwise
deviations, leading to an efficient method. In addition, when the products are
substitutable and the price ladder is of size two, we show that the unconstrained
problem can be solved efficiently by a linear program. This result is unexpected as
the feasible region of the formulation is not totally unimodular. Next, we derive a
parametric worst-case guarantee on the accuracy of the approximation relative to
the optimal solution. Finally, we test our model on realistic real-world instances and
show its performance and practicality. The model and tool presented in this chapter
allow retailers to solve large realistic instances and to improve their promotion
decisions.
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4.1 Introduction

This chapter presents some recent developments in retail promotions. In many retail
settings such as supermarkets, promotions are a key driver to boost profits. Promo-
tions are used on a daily basis in most retail environments including supermarkets,
drugstores, fashion retailers, electronics stores, online retailers, convenience stores,
etc. For example, a typical supermarket sells several thousand products and needs
to decide the price promotions for all products at each time period. These decisions
are of primary importance, as using the right promotions can significantly enhance
the business’ bottom line. In today’s economy, retailers offer hundreds or even
thousands promotions simultaneously. Promotions aim to increase sales and traffic,
enhance awareness when introducing new items, clear leftover inventory, bolster
customer loyalty, and improve competitiveness. In addition, promotions are often
used as a tool for price discrimination among customers.

Surprisingly, many retailers still employ a manual process based on intuition and
past experience to decide the depth and timing of promotions. The unprecedented
volume of data that is now available to retailers presents an opportunity to develop
decision support tools that can help retailers improve promotion decisions. The
promotion planning process typically involves a large number of decision variables,
and needs to ensure that the relevant business constraints (called promotion business
rules) are satisfied (more details can be found in Sect. 4.3.2). In this chapter, we
discuss how analytics can help retailers decide the promotions for multiple items
while accounting for many important modeling aspects observed in retail data.
In particular, we consider practical models that are motivated by a collaboration
between academia and industry. Most of the material discussed in this chapter is
inspired by the results in Cohen et al. (2017) and in Cohen et al. (2018). For more
details on the specifics of the algorithms, the proofs of the analytical results, and the
managerial insights, we refer the reader to those papers.

Several recent advances in Operations Management and Marketing have focused
on developing new methods to improve the process of deciding retail promotions.
The ultimate goal is to increase the total profit by promoting the right items at the
right time using the right price points. At a high level, retail promotions can be
categorized as follows: (1) manufacturer versus retailer promotions, (2) markdowns
versus temporary price discounts, (3) targeted versus mass campaigns, and (4) price
reductions versus alternative promotion vehicles. We next discuss these four
categorizations.

Manufacturer Versus Retailer Promotions In retail settings, the brand manufac-
turer (e.g., Coca-Cola and Kellogg’s) can directly offer a price discount either to the
retailer or to the end consumer. These incentives are often called trade funds, vendor
funds, or manufacturer coupons. These types of promotion are usually driven by
long-term negotiations between the manufacturer and the retailer and involve several
contractual terms. For example, a manufacturer can offer a rebate to the retailer if
the cumulative sales during the quarter exceed a certain target level. In exchange,
the retailer will place the manufacturer’s products in preferred locations (e.g., end-
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cap displays). A second example is a shared promotion contract in which the
manufacturer subsidizes some portion of the price discount offered to consumers.
A third example occurs when a manufacturer offers a coupon to end-consumers
who then need to claim the discount (at the store or online). Typically, retailers
need to decide when to accept such vendor funds and under what conditions. In
many situations, manufacturers tend to be aggressive on these contractual terms
by imposing long-term commitments, high volumes, and sometimes exclusivity
restrictions (e.g., not allowing promoting competing brands).

Markdowns versus Temporary Price Discounts Markdowns typically refer to
the practice of decreasing the price of an item at the end of the selling season. The
regular price is decreased in order to clear leftover inventory. Note that in such a
case, the price may be reduced several times but cannot be increased back to the
regular price. This is common practice in the fashion and tourism industries as well
as in the business of selling tickets for media events (e.g., concerts). For example,
summer apparel may be discounted toward the end of the season if remaining
inventory is higher than anticipated. On the other hand, temporary price discounts
are used in different contexts. A well-known such context is Fast-Moving Consumer
Goods (FMCG) such as processed foods, soft drinks, and frequently purchased
household products (e.g., laundry detergent and toothpaste). These products are
usually non-perishable and have a long shelf life. Such purchases are recurring and
retailers do not need to clear remaining inventory. To increase profit, it is common
for retailers to use temporary price reductions (e.g., 20% off the regular price during
1 week).

Targeted versus Mass Campaigns Retailers can decide either to send promotions
to a few targeted customers or to simply decrease the price of a particular
product for all potential buyers. Targeted marketing campaigns can be implemented
via email-redeemable coupons or by using advanced geo-localization techniques.
Online retailers often use targeted promotions by tracking potential customers using
cookies and by sending promotional offers to selected sets of customers (e.g.,
active members that made a recent purchase). On the other hand, mass promotions
are price discounts that apply to all customers. Brick-and-mortar retailers such as
supermarkets mainly employ mass-promotion campaigns.

Price Reductions versus Alternative Promotion Vehicles Retailers promote
products in many ways. The most straightforward method is to use a price discount
in which the item is temporarily priced below its regular price. Other options
include “buy one get one free” offers, in-store flyers, coupons, tasting stands, placing
products at the end of an aisle (end-cap display), sending out flyers, broadcasting TV
commercials, and radio advertisements (these are often called promotion vehicles).
Typically, a retailer can choose among 5–40 different promotion vehicles at each
point in time.

In this chapter, we focus on the mass pricing promotion optimization problem
faced by a retailer who sells FMCG products. Namely, we consider a retailer
(e.g., a supermarket) who needs to decide which items to promote, at which price
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points, and when to schedule the promotions of the different items. The problems of
setting the right manufacturer incentives, optimizing markdowns, designing targeted
promotions, and optimizing promotion vehicles are also important retail questions,
but are beyond the scope of this chapter. We will briefly refer to some of the relevant
literature on these problems in Sect. 4.2.

The amount of money spent on promotions for FMCG products can be
significant—it is estimated that FMCG manufacturers spend about $1 trillion
annually on promotions (Nielsen 2015). In addition, promotions play an important
role in the FMCG industry as a large proportion of sales is made during promotions.
For example, retail data indicates that 12–25% of supermarket sales in five European
countries were made during promotions (Gedenk et al. 2006). The market research
group IRI found that more than half of all goods (54.6%) sold to UK shoppers in
supermarkets and major retailers were on promotion.1

The promotion planning process faced by a medium to large size retailer is
challenging for several reasons. First, one needs to carefully account for cross-
item effects in demand (cannibalization and complementarity). When promoting
a particular item, the demand for some other products may also be affected by the
promotion. Consequently, one needs to decide the promotions of all items in the
category while accounting for those effects that can be directly estimated from data.
Second, retail promotions are often constrained by a set of business rules specified
by the retailer and/or the product’s manufacturer. Examples of business rules include
prices chosen from a set of discrete values, limiting the number of promotions
(both per time period and for each item), and cross-item business rules that restrict
the relationship between prices of different items (more details are provided in
Sect. 4.3.2). Third, demand usually exhibits a post-promotion-dip effect. This effect
is induced by promotion fatigue (i.e., repeating the same promotion may have a low
marginal impact) and by the stockpiling behavior of consumers. More precisely,
for certain categories of (non-perishable) products, customers tend to stockpile
during promotions by purchasing larger quantities for future consumption. This
ultimately leads to a reduced demand following the promotion period. Fourth, the
problem is difficult due to its large scale. As we mentioned, an average supermarket
offers several thousand SKUs (Stock Keeping Units), and the number of items on
promotion at any time can be very large. Consequently, this leads to a large number
of decisions that need to be made by the retailer.

Retail promotions can have a significant impact on boosting sales and on
influencing customers. For example, a study from the International Council of
Shopping Centers shows that 90% of adult consumers claim to be influenced by
promotions in terms of the amount they spend and the items they purchase.2 Despite
the complexity of the promotion planning process, it is still to this day performed
manually in many supermarket chains. This motivates us to design and study

1https://www.theguardian.com/business/2015/nov/02/majority-of-goods-sold-in-uk-stores-on-
promotion-finds-study-multi-buys.
2 https://retailleader.com/brick-and-mortar-makes-grade-back-school-shopping.

https://www.theguardian.com/business/2015/nov/02/majority-of-goods-sold-in-uk-stores-on-promotion-finds-study-multi-buys
https://retailleader.com/brick-and-mortar-makes-grade-back-school-shopping


4 Promotion Optimization in Retail 75

promotion optimization models that can make promotion planning more efficient
and automated. The goals of this line of research include the following:

• Formulate the Promotion Optimization Problem for Multiple Items (Labeled
as Multi-POP). This formulation is directly motivated from practice, holds for
general demand models (estimated from data), and can incorporate the relevant
business rules.

• Discuss how the Formulation Captures Several Important Economic Factors
Present in Retail Environments. These factors include the post-promotion dip
effect (due to the stockpiling behavior of consumers), cross-item effects, and
demand seasonality.

• Develop an Efficient Approximate Solution Approach to Solve the Problem.
We propose a discrete linearization method that allows the retailer to solve a
large-scale instance of the problem within seconds. We also convey that our
solution approach provides a parametric worst-case bound on the quality of our
approximation relative to the optimal solution (which cannot be found due to
computational limitations).

• Present a Beginning-to-End Application of the Entire Process of Optimizing
Retail Promotions. We divide the process into five steps that the retailer needs
to follow-from collecting and aggregating the data to computing the future
promotion decisions.

• Discuss the Potential Impact of Using Data Analytics and Optimization for
Retail Promotions. We convey that in our tested examples (calibrated with real
data), using the promotions suggested by our model can yield a 2–9% profit
improvement. Such an increase is significant given that retail businesses typically
operate under small margins.

This chapter is organized as follows: In Sect. 4.2, we review some of the
related literature. In Sect. 4.3, we report the notation, assumptions, and problem
formulation. In Sect. 4.4, we present a class of approximation methods to efficiently
solve the promotion optimization problem. In Sect. 4.5, we use our model and
solution approach to draw practical insights on promotion planning, and present
a summary of how to apply our model to real-world retail environments. Finally, we
report our conclusions in Sect. 4.6. As mentioned, additional details on the technical
results and on the insights can be found in Cohen et al. (2017, 2018).

4.2 Literature Review

The topic of retail promotions has been an active research area both in academia
and industry. In particular, our problem is related to several streams of literature,
including dynamic pricing, promotions in Marketing, and retail operations.

Dynamic Pricing Dynamic pricing has been an extensive topic of research in
the Operations Management community. Comprehensive reviews can be found in
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the books and review papers by Bitran and Caldentey (2003), Elmaghraby and
Keskinocak (2003), Talluri and Van Ryzin (2006), Özer and Phillips (2012), as
well as the references therein. A large number of recent papers study the problem
of dynamic pricing under various contexts and modeling assumptions. Examples
include Ahn et al. (2007), Su (2010), and Levin et al. (2010), just to name a few.
In Ahn et al. (2007), the authors propose a demand model in which a proportion of
customers strategically wait k periods and purchase the product once the price falls
below their willingness to pay. They then formulate a mathematical programming
model and develop solution techniques. In Su (2010), the author studies a model
with multiple consumer types who may differ in their holding costs, consumption
rates, and fixed shopping costs. The author solves the dynamic pricing model
by computing the rational expectation equilibrium, and draws several managerial
insights. In Levin et al. (2010), the authors consider a dynamic pricing model
for a monopolist who sells a perishable product to strategic consumers. They
model the problem as a stochastic dynamic game and prove the existence of a
unique subgame-perfect equilibrium pricing strategy. A very prominent topic in
the dynamic pricing literature is the setting in which consumers are strategic (or
forward-looking) (see, e.g., Aviv and Pazgal 2008; Cachon and Swinney 2009;
Levina et al. 2009; Besbes and Lobel 2015; Liu and Cooper 2015; Chen and Farias
2015). The problem considered in this chapter is in the same spirit as the dynamic
pricing problem. Nevertheless, we focus on a setting where the demand model
is estimated from historical data, and the optimization formulation includes the
simultaneous promotion decisions of several interconnected items. In addition, we
require the dynamic pricing decisions to satisfy several business rules.

Promotions in Marketing Sales promotions are an important area of research in
Marketing (see Blattberg and Neslin (1990) and the references therein). However,
the focus in the Marketing community is typically on modeling and estimating
dynamic sales models (econometric or choice models) that can be used to draw
managerial insights (Cooper et al. 1999; Foekens et al. 1998). For example,
Foekens et al. (1998) study econometric models based on scanner data to examine
the dynamic effects of sales promotions. It is widely recognized that for certain
products, promotions may have a pantry-loading or post-promotion dip effect,
i.e., consumers tend to purchase larger quantities during promotions for future
consumption (stockpiling behavior). This effect leads to a decrease in sales in the
short term. To capture the post-promotion dip effect, many of the dynamic sales
models in the Marketing literature posit that the demand is not only a function of
the current price, but also of the past prices (see, e.g., Ailawadi et al. 2007; Macé and
Neslin 2004). Finally, note that several prescriptive studies examine the impact of
retail coupons in the context of sales promotions (see, e.g., Heilman et al. 2002). The
demand models used in this chapter also consider that demand depends explicitly
on current and past prices as well as on prices of other items.

Retail Operations Several academic papers study the topic of retail promotions
from an empirical descriptive perspective. Van Heerde et al. (2003) and Martínez-
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Ruiz et al. (2006) use panel data to study how retail promotions induce consumers
to switch brands. The recent work by Felgate and Fearne (2015) uses supermarket
loyalty card data from a sample of over 1.4 million UK households to analyze
the effect of promotions on the sales of specific products across different shopper
segments. Another line of research discusses field experiments on pricing decisions
implemented at retailers. A classical successful example is the implementation at
the fashion retail chain Zara (see Caro and Gallien 2012). In their work, the authors
report the results of a controlled field experiment conducted in all Belgian and Irish
stores during the 2008 fall-winter season. They assess that the new process has
increased clearance revenues by approximately 6%. An additional recent work can
be found in Ferreira et al. (2015) in which the authors collaborated with Rue La
La, a flash sales fashion online retailer. They propose a non-parametric prediction
model to predict future demand of new products and develop an efficient solution
for the price optimization problem. They estimate a revenue increase for the test
group of approximately 9.7%. Pekgün et al. (2013) describe a collaboration with
the Carlson Rezidor Hotel Group. In this study, the authors show that demand
forecasting and dynamic revenue optimization consistently increased revenue by
2–4% in participating hotels relative to non-participating ones.

Other Types of Promotions As mentioned before, retail promotions can be
divided into several categories. While the models presented in this chapter focus
on the mass pricing promotion optimization problem faced by a retailer who sells
FMCG products, other studies have considered alternative promotion types. Several
papers consider the problem of vendor funds in the context of promotion planning
(see, e.g., Silva-Risso et al. 1999; Nijs et al. 2010; Yuan et al. 2013; Baardman et al.
2017). As mentioned before, an additional related topic is the one of markdown
pricing or markdown optimization. In this problem, the seller needs to decide when
to decrease the price of the item(s) so as to clear remaining inventory by the end
of the season. There are a large number of academic papers that propose different
models and methods to solve the markdown pricing problem. Examples include Yin
et al. (2009), Mersereau and Zhang (2012), Zhang and Cooper (2008), Vakhutinsky
et al. (2012), and Caro and Gallien (2012). As we explained before, the promotion
optimization problem for FMCG products differs from the markdown optimization
problem by the structure of the pricing policy and by the lack of inventory
expiration. The topic of designing targeted promotions has recently attracted a lot of
attention from both academics and practitioners. Given that sending promotions to
existing or new customers can be expensive and often results in low conversion rates,
several firms aim to develop quantitative methods that exploit large historical data
to design targeted promotion campaigns. For example, retailers often need to decide
which types of customer to target, and what are the most important features (e.g.,
geo-localization, demographics, and past behavior). Targeted marketing campaigns
(email and mobile offers) have been extensively studied in the academic literature
(see, e.g., Arora et al. 2008; Fong et al. 2015; Andrews et al. 2015; Jagabathula et al.
2018). Finally, in addition to price promotions, retailers typically need to decide how
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to assign the different vehicles (e.g., flyers and TV commercials). The recent work
in Baardman et al. (2018) addresses the problem of optimally scheduling promotion
vehicles for a retailer.

Methodology From a methodological standpoint, the tools used in this chapter are
related to the literature on nonlinear and integer optimization. We formulate the
promotion optimization problem as a nonlinear mixed integer program (NMIP).
Due to the general classes of demand functions we consider, the objective func-
tion is typically non-concave, and such NMIPs are generally difficult to solve
from a computational standpoint. Under certain special structural conditions (see,
e.g., Hemmecke et al. (2010) and the references therein), there exist polyno-
mial time algorithms for solving NMIPs. However, many NMIPs do not satisfy
these conditions and are solved using techniques such as Branch and Bound,
Outer-Approximation, Generalized Benders, and Extended Cutting Plane methods
(Grossmann 2002).

In the special instance of the promotion optimization problem with linear demand
and continuous prices, one can formulate our problem as a Cardinality-Constrained
Quadratic Optimization (CCQO) problem. It has been shown in Bienstock (1996)
that this problem is NP-hard. Thus, tailored heuristics have been developed to solve
this type of problem (see, for example, Bienstock 1996; Bertsimas and Shioda
2009). The general instance of our problem has discrete variables and considers
a general demand function. Note that our problem was also shown to be NP-hard
(Cohen et al. 2016). Our solution approach is based on approximating the objective
function by exploiting the discrete nature of the problem. Given that we consider
general demand functions, it is not possible to use linearization approaches such
as in Sherali and Adams (1998). Our main approximation method results in a
formulation which is related to the field of Quadratic Programming. Such problems
were extensively studied in the literature (see, e.g., Frank and Wolfe 1956; Balinski
1970; Rhys 1970; Padberg 1989; Nocedal and Wright 2006).

4.3 Problem Formulation

In this section, we formulate the promotion optimization problem (labeled as Multi-
POP). We first introduce our notation and assumptions. We then discuss the various
business rules that the retailer needs to satisfy when deciding price promotions.
Finally, we present the resulting optimization formulation.

Consider a retailer who sells several FMCG products. Very often, retailers decide
the price promotions of their products for each category separately. Consequently,
we focus our presentation on a single category (e.g., ground coffee and soft drinks)
composed of N items (or SKUs). The goal of the category manager is to maximize
the total profit over a selling horizon composed of T periods (for example, one
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quarter of 13 weeks). We denote by pi
t the price of item i at time t .3 We also denote

by ci
t the (exogenous) cost of a single unit of item i at time t . In other words, we

assume that the cost of each item at each time is known, and that the retailer needs
to decide the prices of all N items during all T time periods. A summary of our
notation can be found at the end of this section.

4.3.1 Assumptions

To gain tractability, we impose the following assumptions.

Assumption 4.1

1. The retailer decides all price promotions at the beginning of the season.
2. The retailer carries enough inventory to meet demand for each item in each time

period.4

3. Demand is expressed as a deterministic time-dependent nonlinear function of
prices.

4. The demand function of item i depends explicitly on self-current and past prices
(i.e., pi

t and pi
t−� for � = 1, . . . ,Mi) and on cross-current prices (i.e., the vector

of prices of all items but i at time t denoted p−i
t ).

Here, Mi represents the memory parameter of item i, that is, the number of
past prices that affect current demand. We next briefly discuss the validity of the
above assumptions. Assumption 4.1.1 applies to a setting where the retailer needs
to commit upfront for the entire selling season. For example, such restrictions can
emerge from vendor funds or can be imposed by sending out flyers through different
advertising channels.

Note that Assumption 4.1.2 does not apply to all products and retail settings (e.g.,
very often in the fashion industry, limited inventory is produced to induce scarcity).
Unlike fashion items which may be seasonal, FMCG products are typically available
all year round. These products have a long shelf life and customers have been
conditioned to always find them in stock at retail stores. Since FMCG products are
usually easy to store and have a high degree of availability, FMCG retailers typically
do not stock out. In Cohen et al. (2017), the authors analyze 2 years of supermarket
data for FMCG products and convey that: (1) demand forecast accuracy for this type
of product is often high (good out-of-sample R2 and MAPE) and (2) inventory is not
an issue as very few stock-outs occurred over a 2-year period. This can be justified

3Throughout this chapter, the subscript (resp. superscript) index corresponds to the time (resp.
item).
4We therefore use the words demand and sales interchangeably.
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by the fact that supermarkets have a long experience with inventory decisions, and
collect large data sets allowing them to deploy sophisticated demand forecasting
tools to support ordering decisions (see, e.g., Cooper et al. 1999; Van Donselaar
et al. 2006). Finally, grocery retailers are aware of the negative effects of being out
of stock for promoted products (see, e.g., Corsten and Gruen 2004; Campo et al.
2000). However, for settings where inventory is limited, one needs to consider a
different formulation than the one presented in this chapter.

Assumption 4.1.3 translates to denoting demand of item i at time t by di
t (p),

where p is a vector of current and past prices (see more details below). We
assume that demand is a deterministic function as we observed a high out-of-
sample prediction accuracy using our data. Extending our model when demand is
a stochastic function is an interesting direction for future research (e.g., by using
learning algorithms).

Assumption 4.1.4 implies that the demand function does not explicitly depend
on cross-past prices. In other words, the demand of item i does not depend on the
past prices of other items in the category. This assumption was validated by running
demand prediction models using retail data (more details can be found in Cohen
et al. 2018). Consequently, demand of item i at time t can be any nonlinear and
time-dependent function of the form: di

t (p
i
t , p

i
t−1, . . . , p

i
t−Mi , p−i

t ). Note that in

practice Mi is estimated from historical data and can be item-dependent.
As discussed, demand of item i at time t depends on several factors:

• The self-current price pi
t —This captures the price sensitivity of consumers

toward the item.
• The self-past prices (pi

t−1, . . . , p
i
t−Mi )—This captures the post-promotion dip

effect (induced by the stockpiling behavior of consumers).
• The cross-current prices p−i

t —This captures the cross-item effects on demand
(substitution and complementarity).

• Other potential features such as demand seasonality (weekly, monthly, or
quarterly), trend factor, store effect, holiday boosts, etc.

Concrete demand models such as the log-log demand function can be found in
Cohen et al. (2017).

In most product categories, a promotion for a particular item affects its own sales
but also the sales of other items in the category. As mentioned, we capture these
cross-item effects by assuming that demand of item i depends on the prices of other
items (at the same time period). The standard examples of substitutable items are
competing brands such as Coke and Pepsi. In this case, it is clear that promoting
a Coke product potentially increases Coke’s sales but it may also decrease Pepsi’s
sales. Mathematically, one can assume that if items i and j = i are substitutes, then
∂di

t /∂p
j
t ≥ 0 and ∂d

j
t /∂pi

t ≥ 0 for some t . Two products i and j are complements
if the consumption of i induces customers to purchase item j (and vice versa), e.g.,
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shampoo and conditioner. Mathematically, one can assume that if items i and j = i

are complements, then ∂di
t /∂p

j
t ≤ 0 and ∂d

j
t /∂pi

t ≤ 0 for some t .

4.3.2 Business Rules

In the retail setting that we consider, there are typically two classes of business
rules: (1) business rules on each item separately (called self business rules) and
(2) business rules that impose joint pricing constraints on several items (called cross-
item business rules). The self business rules are identical to the ones presented in
Cohen et al. (2017), whereas the cross-item business rules are similar to Cohen et al.
(2018).

Self Business Rules

1. Prices are Chosen from a Discrete Price Ladder. For each product, there is a finite
set of permissible prices. In particular, we consider that each item i = 1, . . . , N

can take several prices: the regular price denoted by qi0, and Ki = |Qi | − 1
promotion prices denoted by qik , k = 1, . . . Ki . The total number of price points
for item i is called the size of the price ladder (denoted by |Qi |).5 Consequently,

the price of item i at time t can be written as pi
t = ∑Ki

k=0 qikγ ik
t , where the

binary decision variable γ ik
t is equal to 1 if the price of item i at time t is qik and

0 otherwise.
2. Limited Number of Promotions. The retailer may want to limit the promotion

frequency for a product to preserve the image of their store, and not train
customers to be deal-seekers. For example, the retailer may wish to promote
item i at most Li = 3 times during the quarter. This requirement for item i is

captured by the following constraint:
∑T

t=1
∑Ki

k=1 γ ik
t ≤ Li .

3. Separating Periods Between Successive Promotions (No-Touch Constraint). A
common additional requirement is to space out two successive promotions by a
minimal number of separating periods, denoted by Si . This constraint also helps
retailers preserve their store image and discourage consumers to be deal-seekers.
In addition, this type of requirement may be dictated by the manufacturer that
sometimes restricts the frequency of promotions to preserve the brand image.
Such a requirement for item i translates to adding the following constraint:
∑t+Si

τ=t

∑Ki

k=1 γ ik
τ ≤ 1 ∀t .

5For simplicity, we assume that the elements of the price ladder are time-independent but our
results still hold when this assumption is relaxed. In addition, we assume without loss of generality
that the regular non-promotion price qi0 = q0 is the same across all items i = 1, . . . , n and all
time periods (this assumption can be relaxed at the expense of a more cumbersome notation).
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Cross-Item Business Rules

1. Total Limited Number of Promotions. The retailer may want to limit the total
number of promotions throughout the selling season. For example, at most
LT = 20 promotions may be allowed during the season. Mathematically, one
can impose the following constraint:

N∑

i=1

T∑

t=1

Ki∑

k=1

γ ki
t ≤ LT . (4.1)

Note that LT should satisfy
∑N

i=1 Li > LT for this constraint to be relevant.
2. Inter-Item Ordinal Constraints. Several price relations can be dictated by

business rules. For example, smaller size items should have a lower price relative
to similar larger-sized products; and national brands must be more expensive
when compared to private labels. These constraints can be captured by linear
inequalities in prices (e.g., if item i should be priced no higher than item j , one
can add the constraint: pi

t ≤ p
j
t ∀t).

3. Simultaneous Promotions. Sometimes, retailers require particular items to be
promoted simultaneously as part of a manufacturer incentive or a special
promotional event. If items i and j should be promoted simultaneously, one can
impose: γ 0i

t = γ 0j
t ∀t, where γ 0i

t (resp. γ 0j
t ) is a binary variable that is equal to

1 if item i (resp. item j ) is not promoted at time t .
4. Limited Number of Promotions in Each Period. One can impose a limitation on

the number of promotions in each time period. For example, at most Ct = N/10
promotions may be allowed, i.e., at most 10% of the items. Mathematically, we
have:

N∑

i=1

Ki∑

k=1

γ ki
t ≤ Ct ∀t. (4.2)

5. Cross No-Touch Constraints. An additional requirement can be to space out
promotions of a set of similar items by a minimal number of separating periods,
denoted by Sc. As before, this is motivated by the wish of preserving the store
image and to mitigate the incentives for consumers to be deal-seekers. In this
case, we need to separate successive promotions for two (or more) products.
Mathematically, one can impose:

∑

i

t+Sc∑

τ=t

Ki∑

k=1

γ ki
τ ≤ 1 ∀t,

where the sum on i can be over any given subset of items in the category. Note
that when Sc = 0, this corresponds to never promoting the items simultaneously
to impose an exclusive offer (very common in practice).
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4.3.3 Problem Formulation

In what follows, we present the promotion optimization problem for multiple items
(Multi-POP):

max
γ ik
t

N∑

i=1

T∑

t=1

(pi
t − ci

t )d
i
t (p

i
t , p

i
t−1, . . . , p

i
t−Mi , p−i

t )

s.t. pi
t =

Ki∑

k=0

qikγ ik
t ∀i (Prices are chosen from a discrete price ladder)

T∑

t=1

Ki∑

k=1

γ ik
t ≤ Li ∀i (Limited number of promotions)

t+Si∑

τ=t

Ki∑

k=1

γ ik
τ ≤ 1 ∀i, t (No-touch constraint)

Ki∑

k=0

γ ik
t = 1 ∀i, t (Only a single price is selected)

N∑

i=1

T∑

t=1

Ki∑

k=1

γ ki
t ≤ LT (Total limited number of promotions)

N∑

i=1

Ki∑

k=1

γ ki
t ≤ Ct ∀t (Limited number of promotions in each period)

γ ik
t ∈ {0, 1} ∀i, t, k (Binary decision variables).

In this problem, the objective is to maximize the total profit from all N items
during the selling season. The objective function of the (Multi-POP) problem is
denoted MPOP whereas the objective function of the single-item problem is
denoted SPOP . Note that in the above formulation, we have included all self
business rules, as well as the constraints on the total limited number of promotions
from (4.1), and on the limited number of promotions in each period from (4.2).
One can naturally include additional cross-item business rules into the formulation,
depending on the requirements. It is worth mentioning that even in the absence of
cross-item business rules, the N items are linked through cross-item effects present
in the demand functions.
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Summary of Notation

T Length of the selling season
N Number of different items in the category
ci
t Cost of item i at time t (assumed to be known)

pi
t Price of item i at time t (decision variable)

p−i
t Vector of prices of all items but i at time t

di
t (p

i
t , p

i
t−1, . . . , p

i
t−Mi , p−i

t ) Demand of item i at time t assumed to be a
function of the self-current and past prices as well
as cross-current prices (estimated from data)

Mi Memory parameter of item i, i.e., the number of
past prices that affect current demand (estimated
from data)

Li Limitation of the number of promotions for item i

Si No-touch period for item i, i.e., the minimal num-
ber of periods between two successive promotions

Ki Number of promotion prices in the price ladder of
item i

q0 Regular price (assumed to be the same across all
items)

|Qi | = Ki + 1 Total number of possible prices for item i

qik Price point k for item i (k = 1, . . . , Ki)
γ ik
t Binary decision variable to indicate if the price of

item i at time t is equal to qik

MPOP Objective function of the (Multi-POP) problem,
i.e., the total profit generated by all items at all
times

SPOP Objective function of the single-item problem

4.4 Solution Approach

Our goal is to solve the (Multi-POP) optimization problem. Since the problem is a
nonlinear Integer Program, solving the formulation efficiently is not straightforward.
Consequently, we develop an approximate solution approach. The requirements
are twofold: (1) the solution method needs to be efficient and run fast, and (2)
the approximate solution needs to be near-optimal. In retail settings, retailers
typically solve the (Multi-POP) problem for a large number of items. In addition,
retailers often solve several instances of the problem to test the robustness of the
solution before implementing it. More precisely, these routine tests are called what-
if scenarios. They consist of solving perturbed versions of the nominal optimization
problem, where some of the demand parameters and some of the business rules are
slightly modified (more details are discussed in Sect. 4.5.2). In what follows, we
describe the solution approaches developed in Cohen et al. (2017, 2018).
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4.4.1 Single-Item Setting

We first present an efficient solution approach to solve the single-item problem.
While the most interesting and relevant case is the problem with multiple items, the
single-item setting is used as a starting point for the presentation, and is interesting
in its own right. In certain retail categories, the different items can be independent,
i.e., the demand function of each item depends solely on its prices and not on the
prices of other items. In this case, the (Multi-POP) problem decomposes into N

independent single-item problems (assuming that there are no cross-item business
rules), and one can solve each problem separately.

Even in the case of a single item, the problem is hard to solve (the problem is
shown to be NP-hard in Cohen et al. 2016). We observe that the constraints in the
(Multi-POP) formulation are linear. However, the objective function is nonlinear,
and usually neither concave nor convex, as we do not want to impose restrictions
on the structure of the demand functions. This motivates us to propose a way
to approximate the objective function by using a linear approximation and by
exploiting the discrete nature of the problem. In particular, we approximate the
objective function by the sum of the marginal contributions of having a single
promotion at a time. For example, if the item is on promotion at times 2, 3, and
7, we approximate the objective by the sum of the marginal deviations of having a
single promotion at time 2, a single promotion at time 3, and a single promotion at
time 7. We next present this approach, called App(1), in more detail.

The App(1) approximation method ignores the second-order interactions
between promotions and captures only the direct effect of each promotion. Since we
consider the same set of constraints as in the original problem, the solution remains
feasible. We next introduce some additional notation. We consider a particular item,
and hence we drop the superscript i in the remainder of this subsection. For a given
price vector p = (p1, . . . , pT ), we define the corresponding total profit (of the item
under consideration) throughout the season:

SPOP(p) =
T∑

t=1

(pt − ct )dt (pt ).

Next, we define the price vector (of dimension T ) pk
t such that the promotion price

qk is used at time t , and the regular price q0 (no promotion) is used for all remaining
periods. We denote the regular price vector (of dimension T ) by p0 = (q0, . . . , q0),
for which the regular price is set at all time periods. We define the coefficients bk

t as
follows:

bk
t = SPOP(pk

t ) − SPOP(p0). (4.3)

The coefficients in Eq. (4.3) represent the unilateral deviations in total profit
obtained by using a single promotion at a single point in time. One can compute
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these T K coefficients before starting the optimization procedure so that it does not
affect the complexity of the method. The approximated objective function is then
given by:

SPOP(p0) + max
γ k
t

T∑

t=1

K∑

k=1

bk
t γ

k
t , (4.4)

while the set of constraints is the same as in the original problem. Consequently, the
approximation optimization problem is linear and can be solved using a solver. As
mentioned before, two important requirements for our solution approach are (1) a
low running time and (2) a near-optimal solution. We next summarize the properties
(both theoretical and practical) for the single-item setting.

Summary for the Single-Item Setting We solve the promotion optimization
problem for a single item using the App(1) approximation. This approximation
linearizes the objective solution by computing the sum of the marginal contributions
of each promotion separately. The following properties hold:

• The formulation is integral, i.e., one can solve the problem efficiently by
considering the Linear Programming (LP) relaxation.

• Under two general demand models which are discussed below (multiplicative
and additive), we derive a parametric worst-case bound on the quality of the
approximation relative to the optimal profit (the expressions can be found in
Theorems 1 and EC.1 in Cohen et al. 2017).

• In many tested instances (calibrated with real data), the approximation yields a
solution which is optimal or very close to optimal.

We next discuss the implications of the above summary. Since one can get a
solution by solving an LP, the approach is efficient (we can solve large instances in
milliseconds). Consequently, the retailer can use this approach in practical settings.
The approach works for a general demand function and for any objective function.
If we further impose some structure on the demand function, we can derive a
parametric bound on the quality of the approximation. We do so by considering
two general classes of demand functions:

1. Multiplicative Demand:

dt (pt , pt−1, . . . , pt−M) = ft (pt ) · g1(pt−1) · g2(pt−2) · . . . · gM(pt−M),

(4.5)

that is, the demand function (of the item under consideration) can be written as the
product of M functions that each depends on a single price. Note that since we
consider a single-item setting, demand does not depend on the prices of other items.
The class of demand functions in (4.5) includes the log-log and log-linear functions,
which are commonly-used in retail.



4 Promotion Optimization in Retail 87

2. Additive Demand:

dt

(
pt , pt−1, . . . , pt−M

) = ft (pt ) + g1(pt−1) + g2(pt−2) + . . . + gM(pt−M),

(4.6)

that is, the demand function (of the item under consideration) can be written as
the sum of M functions that each depends on a single price. The class of demand
functions in (4.6) includes the linear function as a special case.

For these two classes of demand functions, one can derive bounds on the quality
of the App(1) approximation. These bounds explicitly depend on the problem
parameters and depict a very high performance on all the instances we tested (based
on retail data). More details can be found in Cohen et al. (2017).

4.4.2 Multiple-Item Setting

In this section, we consider the more general setting where the retailer needs to
decide the prices of N interconnected items by solving the (Multi-POP) problem.
Recall that in this case, a promotion in item i may have an effect on demand of item
j = i. The cross-item effects on demand can be directly estimated from data. A
potential simple approach can be the following: Solve the (Multi-POP) problem by
applying the App(1) solution approach, i.e., approximate the objective by the sum of
the marginal contributions of each item at each period ignoring cross-item effects (as
discussed in Sect. 4.4.1). We tested this approach and observed a poor performance
(especially in cases where cross-item effects are significant). In particular, it fails
to accurately capture cross-item effects and may find a promotion strategy far from
optimal. For example, it may suggest to promote two items simultaneously, whereas
this pair of items highly cannibalize each other. As a result, one needs to develop
an alternative solution approach that can capture cross-item effects, and at the same
time, remains efficient. We introduce the following sequence of methods, App(κ),
for any given κ = 1, 2, . . . , N .

• App(1) is the approximation applied to (Multi-POP) in a similar fashion as in
the single-item setting discussed in Sect. 4.4.1. Specifically, it approximates the
objective function by the sum of the marginal contributions of a single promotion
for each item and period separately. As previously discussed, in the case of
multiple items, it will generally provide a poor performance guarantee relative
to the optimal solution.

• App(2) is an alternative approximation applied to (Multi-POP) that includes the
marginal contributions (same as App(1)), as well as the pairwise contributions
(i.e., having two items promoted at the same time). App(2) is described in full
details below.
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• More generally, App(κ) for any κ = 3, . . . , N is an alternative approximation
that includes the marginal contributions, the pairwise contributions, the three-
way, four-way, up to k-way contributions.

There is a clear trade-off between simplicity (as well as speed) and performance
(in terms of accuracy of the approximation relative to the optimal solution). On one
extreme, App(1) is a simple approach that only requires computing the marginal
contributions of having a single promotion at a time, but can perform poorly as it
does not capture cross-item effects at all. On the other extreme, App(N) is clearly
more accurate, as it successfully captures all cross-item effects. However, this
benefit comes at the expense of being more complex, as one needs to compute the
marginal contribution of each possible combination of items that could be promoted
simultaneously. More precisely, it requires us to compute an exponential number
of coefficients and to solve an Integer Program (IP) that grows exponentially with
the number of items. Note that when T = 1 or Mi = 0 ∀i, App(N) is exact as
it captures accurately all cross-item effects. Nevertheless, for a general dynamic
problem with T > 1 periods and non-zero memory parameters, App(N) is still not
an exact algorithm, as it approximates the time effects induced by past prices. We
next describe App(2) in more details as we will use it subsequently.

As we previously mentioned, App(2) approximates the objective of (Multi-POP)
by the sum of unilateral deviations (i.e., having a single promotion at a time) and
the pairwise contributions (i.e., having two items promoted simultaneously). More
precisely, the approximated objective is:

MPOP(p0) + max
γ

{ N∑

i=1

T∑

t=1

Ki∑

k=1

bki
t γ ki

t +
N∑

i,j :i>j

T∑

t=1

Ki∑

k=1

Kj∑

�=1

b
k�ij
t γ

k�ij
t

}
,

(4.7)

where the coefficients bki
t and b

k�ij
t are formally defined in Eqs. (4.8) and (4.9)

respectively. We denote the regular price vector (of dimension NT ) by p0 =
(q0, . . . , q0), which means that the regular price is set for all items at all times. The
first term, denoted MPOP(p0), represents the total profit generated by all items
throughout the selling season, without any promotion. The second term captures all
the marginal contributions of having a single promotion, i.e., for one item in one
time period. More precisely, we define the price vector pkj

t (of dimension NT ) as
follows:

(pkj
t )τ,i =

{
qkj , if τ = t and i = j,

q0, otherwise.

In other words, the vector pkj
t has the promotion price qkj for item j at time t , and

the regular price q0 (no promotion) is used for all remaining periods for item j , and
for all other items at all times. The coefficient b

kj
t is then given by:
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b
kj
t = MPOP(pkj

t ) − MPOP(p0), (4.8)

and represents the marginal contribution in total profit of having a single promotion
for item j at time t , using price qkj .

The third term in Eq. (4.7) represents all the pairwise contributions of having two
items on promotion at the same time. More precisely, we define the price vector (of
dimension NT ) pk�ju

t for all pairs of items j > u as follows:

(pk�ju
t )τ,i =

⎧
⎪⎪⎨

⎪⎪⎩

qkj , if τ = t and i = j,

q�u, if τ = t and i = u,

q0, otherwise.

In other words, the vector pk�ju
t uses the promotion price qkj for item j at time t ,

the promotion price q�u for item u at time t , and the regular price q0 for items j and
u in all remaining periods, and for all other items at all times. The coefficient b

k�ju
t

is given by:

b
k�ju
t = MPOP(pk�ju

t )−MPOP(pkj
t )−MPOP(p�u

t )+MPOP(p0), (4.9)

and represents the marginal pairwise contribution in total profit of having two
simultaneous promotions. Finally, to make the formulation consistent, we should
ensure that when both items i and j are on promotion, we count the pairwise
contribution but also both unilateral deviations, i.e., for each pair of items i and
j < i, γ ki

t = γ
�j
t = 1 if and only if γ

k�ij
t = 1 for each t and k, �. One can encode

this set of conditions by incorporating the following constraints into the formulation
for each pair of items i, j < i, each t , and each promotion prices qki and q�j :

γ
k�ij
t ≤ γ ki

t ,

γ
k�ij
t ≤ γ

�j
t ,

γ
k�ij
t ≥ 0,

γ
k�ij
t ≥ γ ki

t + γ
�j
t − 1.

When maximizing the objective of the approximated problem in Eq. (4.7), the
decisions are the binary variables γ . Specifically, there is one such variable for each
item/time/price (i.e., there are NT (K + 1) variables, assuming for simplicity that
Ki = K ∀i), and one such variable for any pair of items i > j at each time/price
(i.e., (N(N − 1)/2)T K2 variables). As mentioned, for App(N), this number grows
exponentially with N and K and hence, it may not be practical to go beyond App(3)

or App(4). We next summarize the main results for the multiple-item setting.
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Summary for the Multiple-Item Setting We solve the promotion optimization
problem for multiple items by using the App(2) approximation. The following
properties hold6:

• Assuming that the cross-item effects for each item are additively separable, i.e.,

di
t (p

i
t , p

i
t−1, . . . , p

i
t−Mi , p−i

t ) = hi
t (p

i
t , p

i
t−1, . . . , p

i
t−Mi ) +

∑

j =i

H
ji
t (p

j
t ),

(4.10)

then App(2) = App(3) = . . . = App(N).
• If we further assume that the function hi

t (p
i
t , p

i
t−1, . . . , p

i
t−Mi ) is additively

separable for each item, i.e.,

hi
t (p

i
t , p

i
t−1, . . . , p

i
t−Mi ) = f i

t (pi
t ) + gi

1(p
i
t−1) + . . . + gi

Mi
(pi

t−Mi ), (4.11)

then the App(2) solution is optimal.
• Consider the class of demand models in (4.10) and Ki = 1 (i.e., a single

promotion price). For substitutable items, the App(2) formulation can be solved
efficiently in the absence of business rules (i.e., the formulation is always integral
and can be solved as an LP).

• Under two general demand models (multiplicative and additive price depen-
dence), we derive a parametric bound on the quality of the approximation relative
to the optimal profit.

• In many tested instances, the approximation yields a solution which is optimal or
very close to optimal.

We next discuss the implications of the above summary. Interestingly, for demand
functions with additively separable cross-item effects (several demand models
satisfy this property), it is sufficient to consider App(2) as opposed to including
higher-order terms. In the special case where each item can take two prices, the
App(2) approximation can be solved efficiently when all items are substitutable.
Having two prices is common in practice as the promotion price is often negotiated
upfront with the manufacturer. In the more general case, where the retailer can
choose among several promotion prices, we observed computationally that one can
still solve the IP in low runtimes for realistic-size instances. It is worth mentioning
that for most categories of supermarket items, the products within a category are
either independent (i.e., no cross-item effects) or substitutable. In particular, for
categories such as coffee, tea, and chocolate, we could not find any complementarity
effects in the data we analyzed. Note also that even if some of the products are
complements, we observed by extensive testing that solving the relaxation of the
App(2) formulation yields an optimal integer solution very often. More details on
such computational tests are presented in Cohen et al. (2018).

6More details can be found in Cohen et al. (2017, 2018).
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4.5 Insights and Practical Impact

In this section, we summarize the insights we could draw by solving the (Multi-
POP) problem using our solution approach. We then describe how to concretely
apply our model to a real-world retail setting.

4.5.1 Insights

We briefly discuss several insights that were drawn by using our promotion
optimization model. Very often, retailers want to infer the impact of promoting
different items at different time periods. Our solution approach can easily be used
to test various promotion strategies, so as to reach a better understanding of the
impact of retail promotions. As mentioned, several economic factors are present
in the context of our problem: cross-item effects on demand, the post-promotion
dip effect, seasonality, and the presence of business rules. It is clearly valuable
for retailers to learn the tradeoffs between these different effects and to understand
how they impact promotion decisions. Our model can help retailers to deepen their
knowledge of the following topics:

• Understanding the Structure of Cross-Item Effects. In a given category of
items, retailers need to decide the price promotions by accounting for cross-
item effects on demand. Using our model, retailers can infer the impact of
promoting a specific item on the demand level of each item in the category.
This can ultimately allow retailers to carefully decide which set of items should
be promoted simultaneously, and which should not. For example, when two (or
more) items have strong substitution effects (i.e., promoting an item increases
its own sales but also decreases the sales of other items), retailers should not
promote those items simultaneously. More details on such insights can be found
in Cohen et al. (2018).

• Inferring the Strength of the Post-Promotion Dip Effect. It is well-known
that promoting a FMCG product induces a boost in its current demand, as well
as a potential decrease in its future demand, due to the stockpiling behavior of
consumers and the promotion fatigue effect. The strength of the post-promotion
dip effect can vary significantly depending on the category under consideration.
For example, in Cohen et al. (2017), the authors found that the number of past
prices that affect current demand (which is one possible way to measure the
post-promotion dip effect) highly depends on the item and on the category. For
example, the post-promotion dip effect tends to be weaker for perishable products
and for luxury/expensive brands, as expected.

• Identifying the Presence of a Loss-Leader Effect. The loss leader is a common
phenomenon in which one item is priced below its cost to extract significant
profits on complementary items (see, e.g., Hess and Gerstner 1987). It is reported
in Cohen et al. (2018) that the model considered in this chapter can identify
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the presence of a loss-leader effect. This can be a very important information
for retailers that can use one (or more) items to profitably deploy a loss-leader
strategy.

• Learning the Impact of the Business Rules. As discussed in Sect. 4.4, retailers
can easily solve several instances of the problem, with and without the presence
of some of the business rules. Consequently, this allows retailers to quantify the
profit impact of relaxing some of the business requirements. This can ultimately
help them decide which vendor funds to accept and under what terms.

In practice, retailers often solve the (Multi-POP) problem for large-scale
instances that involve a number of different factors. It does not seem possible
for managers, as experienced as they are, to understand and anticipate the impact
of all the conflicting tradeoffs. Using an optimization tool calibrated with data can
take into account all the different tradeoffs and compute a close-to-optimal solution
for the promotion planning problem.

4.5.2 Practical Impact

We next consider a concrete application of the (Multi-POP) optimization problem.
We propose a generic process that can be used by retailers who seek to improve
promotion planning decisions. This process consists of the following five steps:

1. Data collection, cleaning, and aggregation
2. Store and product clustering
3. Demand estimation
4. Optimization and sensitivity analysis
5. Quantifying the impact.

We next describe each step in more detail.

Data Collection, Cleaning, and Aggregation The first step is to collect and
store the relevant data. In our context, retailers need to simply collect the data
from past transactions. Each observation typically includes the store, the date/time,
the items purchased, the prices, the promotion vehicles that were used, as well
as various features of the item (brand, size, flavor, etc.). After gathering a large
enough dataset, one needs to carefully clean the data and perform the appropriate
aggregations. Various techniques exist for cleaning and aggregating data but this
is beyond the scope of this chapter (see, e.g., the book by Han et al. 2011). At a
high level, one wants to deal with the missing data, remove outliers, and perform
basic statistical tests. Once the data is cleaned, one needs to decide the level of
aggregation. Depending on the context, one can perform the analysis at the brand,
item, or category level. Similarly, one can aggregate the data at the week, day, or
hour level. Once the data is cleaned and aggregated at the right level, one can start
using it for estimation and prediction purposes. For example, in Cohen et al. (2017),
the authors decided to aggregate the data at the brand-week level.
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Store and Product Clustering In many retail settings, available historical data
can be sparse. As a result, one needs to combine the data from multiple sources
in order to obtain more reliable forecasts. Two common techniques widely used
in retail consist of merging several stores together or clustering similar products.
The idea is to use the data from several stores that share similar features (e.g.,
geographical location, size, management team). Similarly, items from the same
brand (e.g., different sizes or flavors) can often be clustered together to improve
the prediction accuracy of the models.

Demand Estimation This step is the actual first stage of using our promotion
optimization model. As an input to the optimization, one first needs to estimate the
demand models. The modeler has several degrees of freedom: choice of the demand
function (e.g., log-log, log-linear), selection of the dependent variables, choice of
the instrumental variables (if any), and choice of the estimation procedure. In many
applications, one can simply run a linear regression (e.g., ordinary or weighted
least squares, ridge regression, lasso). The typical process also includes splitting the
data for out-of-sample testing. The demand estimation step is completed once the
prediction model yields a high out-of-sample prediction accuracy. In practice, one
needs to test different models and assumptions in order to reach a good and robust
prediction model. In Cohen et al. (2017), the authors present a prediction model for
two coffee brands based on using ordinary least squares to predict a log-log model
that includes past prices, weekly seasonality, and trend effect. The resulting out-of-
sample R2 (resp. MAPE) was around 0.90 (resp. 0.11).

Optimization and Sensitivity Analysis Once the demand models are accurately
estimated from data, one can use them as an input to the (Multi-POP) problem. The
retailer also needs to specify the business rules that need to be satisfied, the number
of time periods in the selling season, and the cost of each item at each period. At
this point, one can use the App(2) approximation method presented in Sect. 4.4.2
to solve the problem. As discussed before, this yields a near-optimal solution by
computing the price promotions of all items during each period of the selling
season. Usually, retailers want to check the robustness of the solution prior to a
potential implementation. To this end, one can re-solve the (Multi-POP) problem by
perturbing several input parameters (e.g., estimated demand coefficients, business
rules’ parameters). If the suggested solution appears to be robust with respect to
variations in the problem input, this provides a higher confidence on the validity of
the solution.

Quantifying the Impact The last step is to assess the potential impact of the entire
process. For example, one can compare the simulation results obtained by using
the optimized promotion prices relative to the profit generated using the original
promotion prices set by the retailer. In our experience, by applying our model to
several retailers, we observed a profit improvement of 2–9%, depending on the
product category and the store under consideration.
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4.6 Conclusions

Retail promotions are important decisions faced by most retailers. Promoting the
right set of items at the right time using the right price points can have a significant
impact on retailers’ bottom line. In settings such as supermarkets, retailers need to
simultaneously decide the price promotions for multiple items throughout the selling
season. Historically, many retailers were designing their promotion strategies based
on past experience and on trial-and-error processes. The unprecedented volume of
available data has now changed the picture. Using past data, retailers can improve
demand forecasting accuracy. They can also exploit the data to develop quantitative
tools for promotion planning. In particular, the combination of data analytics
and optimization allows retailers to decide promotions in a more systematic and
profitable fashion. In this chapter, we considered a retailer selling FMCG products
who needs to decide the (mass) price promotions for all items in a category. We
first formulated the problem as a nonlinear integer program. This formulation holds
under general demand functions estimated from data and includes several practical
business rules which typically apply to price promotions. Given that the resulting
formulation is hard to solve, we presented an approximate solution approach. This
approach can solve the problem in short timeframes, and admits a parametric
worst-case bound on the quality of the approximation. We first considered the
single-item setting, and then extended the presentation to the more general instance
with multiple items. In each case, we presented the model, the approximate solution
approach, and its analytical and practical properties. Overall, the methods presented
in this chapter run fast and provide a near-optimal solution for many tested instances
(calibrated with real data).

We then summarized an application of this model to a real-world setting. In
particular, we proposed a beginning-to-end process for retailers that consists of
five steps: (1) data collection, cleaning, and aggregation, (2) store and product
clustering, (3) demand estimation, (4) optimization and sensitivity analysis, and
(5) quantifying the impact. By following these steps, retailers can potentially
improve their promotion planning process. In our own experience, we observed a
profit improvement of 2–9%, which is a significant impact in the retail industry.

While most of the results presented in this chapter are borrowed from previous
publications (mainly from Cohen et al. 2017, 2018), it provides a summary of this
line of research by presenting the two complementary studies in a single report.
This chapter has focused on the mass pricing promotion optimization problem
faced by a retailer who sells FMCG products. As mentioned in Sect. 4.1, several
alternative promotion problems are also important in the retail industry. Interesting
research directions can be the development of new data-driven decision tools for
those practical retail problems.
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Chapter 5
Optimization of Operational Decisions in
Digital Advertising: A Literature Review

Narendra Agrawal, Sami Najafi-Asadolahi, and Stephen A. Smith

Abstract The digital advertising industry has witnessed an impressive explosion
since its inception. With Internet advertising revenues already at over $200 billion,
the projections are for continued growth. The format and technological underpin-
nings of digital advertising make it a fascinating subject of study for practitioners
and academics alike, and distinguish it from traditional advertising in many ways.
In contrast to traditional advertising, online advertising offers significantly more
channels, a lower cost alternative, greater targeting and personalization capabilities,
and dynamic pricing capabilities. While these digital technologies offer unprece-
dented opportunities to marketers to maximize the ROI on their marketing budgets,
the data-rich environment also presents a unique set of managerial, operational, and
intellectual challenges. In this chapter, we introduce the reader to some of these
challenges. Our goal is to identify some of the salient operational challenges facing
advertisers and publishers in this digital advertising environment, and summarize
the state of the art of the published research that attempts to address these
challenges. Our hope is that practitioners, academics, and graduate students will
find this to be a valuable resource in their various endeavors.

Keywords Digital supply chain · Advertisers · Publishers · Ad exchanges ·
Display advertising · Search advertising · Inventory allocation · Ad scheduling ·
Ad pacing · Ad pricing

5.1 Introduction

“In an information-rich world, the wealth of information means a dearth of
something else: a scarcity of whatever it is that information consumes. What
information consumes is rather obvious: it consumes the attention of its recipients.
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Hence a wealth of information creates a poverty of attention and a need to allocate
that attention efficiently among the overabundance of information sources that might
consume it.” This famous quote by Herbert Simon in 1971 very aptly captures a key
challenge faced by advertisers—grabbing attention of the target consumers in an
effective manner. This is particularly true in today’s era of sensory and information
overload that characterizes all markets and consumers today. Digital advertising has
created unprecedented opportunities and challenges for companies and consumers
alike in this rapidly evolving arena.

Legend has it that the first digital advertisement appeared in 1994 as a HotWired
banner ad from AT&T, which asked: “Have you ever clicked your mouse right here?
You will.” While conversion of the traditional ads to the electronic media format as
faxes and emails had already begun by then, this ad was a sign of things to come.
The digital advertising industry has witnessed an impressive explosion since then.
According to the PwC IAB Report of 2017, out of a total advertising spend of nearly
$200 billion, Internet advertising revenues in the USA totaled $88 billion for the
year 2017, which was a 21.4% increase over 2016. The figure was about $49.5
billion during the first 6 months of 2018, which represented a 23.1% increase over
the same period in 2017. Industry experts expect 2018 revenues to exceed 2017
revenues by a significant margin. About 46% of these revenues derive from search-
related ads, 46% from display (32% banner ads and 14% video ads), and the rest
from other categories such as classified ads, lead generation, and audio ads.

The number of channels available for traditional advertising, even aggregated
across print media and other platforms, is small. In comparison, with over a billion
websites and nearly five billion mobile device users, the number of channels for
digital advertising is potentially very large. Advertising in traditional formats can be
very expensive. For example, broadcasting a 30 s commercial ad on CNN typically
costs between $6000 and $7000 during the day and could go up to $30,000 in
prime time. Moreover, the effectiveness of reaching the intended audience can be
low. In comparison, posting an ad on CNN’s website can cost as little as 2.5 cents
each time the ad is displayed to a viewer. As compared to the traditional print and
media advertising, the Internet enables a considerably more granular targeting of
the consumer that advertisers intend to reach. This allows ads to be personalized
and targeted to specific individuals, platforms, and contexts, delivered at any time
and at any location, updated frequently in a cost-effective manner, and priced almost
in real-time. For example, over 100 billion impressions are now served daily, with
hundreds of variables being used to qualify the viewer of each impression (publisher
site, URL, ad characteristics, demographic characteristics, etc.). The total number
of resulting combinations of values that characterize impression opportunities is
in the millions of billions, a level of segmentation unimaginable in the traditional
advertising environment. Digital advertising also offers the opportunity to update the
ads served based on the users’ interactions with what has been previously displayed.

Although technology offers unprecedented opportunities to marketers to max-
imize the ROI on their marketing budgets, the data-rich environment presents a
unique set of managerial, operational, and intellectual challenges. It is some of these
challenges that we intend to explore throughout this chapter. Our goal is to identify
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some of the salient operational challenges facing advertisers and publishers in this
digital advertising environment and summarize the state of the art of the published
research that attempts to address these challenges. Our hope is that practitioners,
academics and graduate students will find this to be a valuable resource in their
various endeavors.

Our focus is on operational problems in the digital advertising industry which
lend themselves to optimization techniques. We do not, for example, focus on
the vast literature (much of it in the domain of marketing journals) that aims to
characterize user behavior in online settings, or estimate various parameters that
would be relevant to subsequent decision making. For example, papers that attempt
to estimate click-through rates and display ad effectiveness including Chatterjee
et al. (2003), Rutz and Bucklin (2012), Johnson et al. (2017). Ghose and Yang
(2009), Agarwal et al. (2011), and Narayanan and Kalyanam (2015) examine the
role of an ad’s location on a page on viewer actions in the context of sponsored
search. These and other related articles are discussed in Bucklin and Hoban (2017).
Even within our scope, ours is not the only survey paper on this vast topic. We want
to draw the reader’s attention to excellent reviews by Korula et al. (2016), Choi
et al. (2017), and Wang et al. (2017). In Korula et al. (2016), the focus of the review
is on the mechanisms for selling display advertising, which include reservation
contracts and real-time bidding on exchanges. They discuss the key terms included
typically in reservation contracts, and theoretical as well as practical challenges
in specifying these terms. They also discuss some of the issues in exchange
markets—design of the auction, the fee structure for the exchange, and the role
of intermediaries. Finally, they also point to challenges faced when contracts and
bidding happen simultaneously,1 including adverse selection and fair allocation, and
discuss approaches to address such issues. In contrast, Choi et al. (2017) focus on
issues related to display advertising only, but cover a broader range of topics, and do
so from the perspective of advertisers, publishers, and intermediaries (DSPs, SSPs,
ad exchanges, ad networks, and data aggregators). In particular, their discussion
on intermediaries is very interesting. Intermediaries possess information spanning
advertisers and publishers and can, therefore, assess the competitive landscape
more completely than a single advertiser or publisher. However, their incentives for
sharing data may differ from those of the advertisers or publishers. Therefore, while
intermediaries can lead to improved market efficiency, publishers and advertisers
must design appropriate contracts to address the incentive incompatibility issues.
Wang et al. (2017) focus primarily on real-time bidding and provide an overview of
the infrastructure and solution algorithms related to topics such as user response
prediction, bid landscape forecasting, bidding algorithms, revenue optimization,
statistical arbitrage, dynamic pricing, and ad fraud detection.

1For example, if the value of impressions to advertisers who bid on the exchange and who buy
contracts is correlated, the “valuable” impressions will be cherry-picked by advertisers on the
exchange.
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While these survey papers cover a broad range of topics, in contrast, our focus
is on a deeper description of the published literature on optimization of some of the
most important operational decisions involved in digital advertising. In other words,
our focus is primarily on the methodological and algorithmic aspect of decision
making in this environment. In this sense, our survey provides a nice complement
to those by Korula et al. (2016), Choi et al. (2017), and Wang et al. (2017).

We begin with a brief discussion on the literature on traditional advertising in
Sect. 5.2. We then describe the online advertising ecosystem as a digital supply chain
and overview the industry structure in Sect. 5.3. A detailed description of the key
operational problems facing each major entity in this supply chain and a review of
optimization models for these problems are presented in Sect. 5.4. We conclude with
some observations about open research opportunities in Sect. 5.5.

5.2 Traditional Advertising

We begin with a short discussion of traditional (i.e., nondigital) promotions. The
published literature related to this topic is vast, and thus it does not seem practical
or desirable to attempt to survey it in this chapter. Instead, a few papers that address
certain specific issues will be discussed to provide insights that may apply to digital
promotions as well. Traditionally, promotions have targeted retail sales and services
across a wide range of merchandise including grocery, package goods, housewares,
apparel, auto parts and home improvement, as well as many types of specialty items.
Traditional promotions can be planned and funded by the retailer, by the brand,
or by the manufacturer, as well as through cooperative arrangements among these
parties. With the growth of digital advertising, traditional and digital promotions
may overlap, either compete with or complement each other, when promoting the
same or similar merchandise. One of the key characteristics that distinguishes the
various types of promotions is their ability to target certain customer groups or types,
or in some cases to target specific customers.

Nearly $200 billion was spent on advertising in the USA in 2016, and that num-
ber is projected to increase substantially in the coming years. Broadcast television
advertising has traditionally been the largest category at $73 billion in 2016, but
in 2017 digital advertising is projected to surpass TV advertising in expenditure.2

The relative effectiveness of TV advertising has long been the subject of some
debate. Rubinson (2009) applied various hypothesis tests to empirical data sets to
conclude that TV advertising is superior to other advertising media for generating
brand awareness, and also that TV advertising effectiveness has not declined over
time, despite consumers’ increased ability to skip through commercials in recorded
programs, or otherwise multi-task. This study did not include digital advertising
specifically, and found that targeted print promotions were the best medium for
generating customer intent to purchase.

2Source: Statistica, the Statistics Portal.
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While TV advertising is the largest component of traditional advertising, broad-
cast television has only limited ability to target specific consumers. For example,
targeting has traditionally been based on the projected viewer type for certain
program content, e.g., advertising beer and pickup trucks during football games.
However, with the explosion in the number of cable channels with their known
subscriber databases, TV advertising can now be targeted more specifically to
groups of viewers. The effectiveness, of course, still depends on whether viewers
actually watch the ads.

Traditional retail promotions that are associated with specific merchandise items
are often referred to as “deals,” and have been the subject of many marketing
studies. An excellent survey of the state of the art at the time is in Blattberg et al.
(1995). This article found empirical studies that supported a number of hypotheses,
while others remained open questions. The ones clearly supported by empirical
evidence, according to this article, include: (1) product specific promotions (price
reductions as well as advertising) lead to a short-term sales spike, (2) higher market
share brands experience less response to deals, due to less switching behavior
by consumers, (3) increasing the frequency of deals lowers the deal spike. Other
questions where the empirical evidence was less conclusive include: (1) What is
the interaction between feature advertising and in store displays? (2) How does
advertising affect store traffic? (3) What are the cross-product effects of promotions
(these seem to vary by product type)? and (4) What are the possible negative long-
term effects of promotions?

A subsequent study of the long-term effects of periodic promotions using a
database for consumer package goods is in Jedidi et al. (1999). They concluded that
a pattern of regular temporary price cuts produced short-term spikes, but reduced
total profits over the longer term, and increasing frequency of promotions was
uniformly negative. Advertising, on the other hand, was found to have positive
long-term effects on profits, but only for some brands. Using different data, Taylor
and Neslin (2005) found that a “buy one get one free” type of reward program for
frequent shoppers had positive long-term effects.

In an editorial, Levy et al. (2004) argued that American retailers were losing
more than $200 billion per year due to temporary markdowns, with as much 78% of
all apparel sold by major department store chains on markdown. The article argues
that this is partly because the short- and long-term interactions between temporary
price cuts, advertising, competition, and other factors are not well understood by
retailers. Carpenter and Moore (2008) studied nonprice promotions using panel data
to estimate how their effectiveness depends on demographic characteristics.

Many of the questions surrounding the effectiveness of traditional retail pro-
motions and their corresponding interaction effects were revisited in Ailawadi
et al. (2009). They point to evidence that in the majority of cases, frequent
price promotions have a long-term negative effect. They also raise the issue of
interactions between traditional and digital promotions, which appear to have
largely unknown effects. The interactions between digital and traditional promotions
are also discussed in Grewal et al. (2011) and Lewis and Reiley (2014).
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For traditional promotions, major advances in customer targeting have been
achieved as a result of the data obtained through retailer loyalty programs. The data
collected on individual customers’ purchases can be used to target print advertising,
catalogs, coupons, and other incentives that are mailed directly to the customer. See
Grewal et al. (2011) for a survey of various promotion planning methods associated
with loyalty programs. Targeted retailer promotions can also involve the use of
digital media in some cases. For example, in a novel combination of in-store sales
and digital advertising, retailers can track shoppers’ smartphones while they are in
the store and then send specific ads to their phones as they pass by the targeted
merchandise.

Retailers use several promotional tools inside the store as well. A recent study
by Leischnig et al. (2011) considers the effectiveness of store events in promoting
brands through creating a positive customer experience. End of aisle displays can
increase sales for the items placed there, as well as placing items in more prominent
shelf locations, or with larger shelf facings. Of course, these strategies may merely
result in the substitution of the prominently displayed items for other similar items
in the store. This is one of the points raised in Levy et al. (2004).

A key question is to what extent do the insights obtained for traditional
promotions carry over to digital promotions. It seems almost certain that frequent
price deals will have negative long-term impacts on profits with digital advertising as
well. Similarly, substitution of promoted items for purchases of other nonpromoted
items clearly can dilute the effects of digital promotions. There is also good reason
to believe that digital media will exacerbate the problem of deal competition,
because consumers now have more ways to compare prices and deals. For example,
shoppers can use web crawlers to search for the best deals before shopping,
compare store prices to the posted online prices, or use their smartphones while
shopping to compare prices at competing retailers. Many retailers have promised
to match competitors’ prices in these situations. There are some indications that a
high frequency of nonprice promotions can have negative effects as well, but this
needs further study. It seems natural to combine the customer information obtained
from traditional loyalty programs with digital advertising, but the effectiveness of
this strategy does not appear to have been studied. Thus, the understanding of
the interaction effects between traditional and digital promotions is still evolving
because the various digital media are evolving so rapidly. The best allocation of
advertising budgets across the various digital and traditional media will remain an
open question for some time, and provides many opportunities for future research.

5.3 Digital Advertising

The key goal in digital advertising is to find the best match between viewers and the
advertisers who wish to target them so that the advertisers’ objectives are realized
effectively. The architecture that helps achieve this supply-demand match, which
we call as the digital advertising supply chain, is described below, followed by a
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discussion on the key operational challenges facing each participant in this supply
chain.

5.3.1 Digital Advertising Supply Chain

A typical digital advertising supply chain, shown in Fig. 5.1, consists of the buy
side (demand side) and the sell side (supply side). In this environment, demand
consists of a request by an advertiser (e.g., INFORMS) to show its ads to viewers
with specific attributes (targeting). Depending upon the advertiser’s objective, this
request may be merely to serve an impression to build awareness (branding adver-
tiser) or to seek a particular measurable action by the viewer such as a click or an
actual purchase (performance advertiser). In addition, the advertiser may seek any
viewer or only those who have already visited its website previously (retargeting).
More sophisticated advertisers attempt to develop strategies for long-term data
ownership, integration, analysis and enablement using their own properties, partners
or advertising campaigns (Kosorin 2016). Metrics used by advertisers include click-
through rate (CTR), conversion rate, ROI, reach,3 and frequency.

Digital media is merely a fraction of advertisers’ overall advertising strategy,
along with print media, television, radio, billboards, etc. Larger advertisers might
have in-house teams to create and execute their advertisements. However, more
often, they work with intermediaries called ad agencies (e.g., AKQA) that perform
the advertising processing functions on behalf of the advertisers.

Advertisers or ad agencies typically access ad inventory through a Demand Side
Platform (DSP), and place ads using its agency trading desk. A DSP is a system (i.e.,
software) that allows buyers of digital advertising inventory to manage multiple
ad exchange and data exchange accounts through one interface.4 DSPs allow
advertisers to manage their bids for the ads and the pricing for the data that they are
layering on to target their audiences while optimizing key performance indicators
such as effective cost per click (eCPC) and effective cost per action (eCPA).
Examples of DSPs include MediaMath, AOL, Doubleclick, and Rocket Fuel.

The sell-side consists of the publishers who control the digital content and
the ad inventory. Prominent media brands (e.g., CNN.com) all the way down to
individual bloggers are examples of publishers. These publishers sell their inventory
either directly to advertisers (or their agents) using their in-house sales teams, or
through ad networks and exchanges. Initially, the premium ad inventory was sold
directly and the rest indirectly, but this allocation of inventory has increasingly
become dynamic. Similar to a DSP, a supply-side (or sell-side) platform (SSP)
is a technology platform that enables publishers to manage their ad spaces and
receive revenue.5 This system allows advertisers to show ads to a targeted audience.

3Reach is the total number of people that the ad is exposed at least once during a given period.
4Source: Wikipedia, 10/6/2017, https://en.wikipedia.org/wiki/Demand-side_platform.
5Source: Wikipedia, 10/6/2017, https://en.wikipedia.org/wiki/Supply-side_platform.

CNN.com
https://en.wikipedia.org/wiki/Demand-side_platform
https://en.wikipedia.org/wiki/Supply-side_platform
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SSPs send potential impressions into ad exchanges, where DSPs purchase them
on marketers’ behalf, depending on specific targeting attributes. Examples of SSPs
include PubMatic, AppNexus, OpenX, AOL, and Google’s AdX.

Ad agencies can place their ads either through an ad exchange, or through an ad
network. Ad networks typically pre-purchase and aggregate inventory from multiple
publishers and sell it at a marked up price (Jerath and Savary 2017). They often
have a fixed cost per mille (cost per 1000 impressions, or CPM) compared with the
changing prices on ad exchanges. Vertical ad networks are transparent regarding the
publisher sites on which the ads are posted. Horizontal ad networks do not offer
such a transparency (blind networks) but offer lower prices.

Ad exchanges, such as Google’s Double Click ad exchange and AppNexus, facil-
itate real-time auctions for ads to be displayed on publisher websites (this process
is described later in this chapter). In addition to running the auctions, they also
facilitate payments to the publishers, and get paid a fee for providing these services.
They add value to the digital supply chain by serving as a clearing house for supply
and demand, thereby reducing the need for inefficient negotiations between multiple
pairs of publishers and advertisers (Korula et al. 2016). The inherent variability
in user traffic can lead to publishers incurring contractually specified penalties
for unmet demand, or opportunity cost due to unsold inventory. Consequently,
following the principles of revenue management, publishers contract to sell less
than the traffic that they forecast, and use ad exchanges to obtain additional revenue
from traffic that exceeds what they have contracted for. Finally, exchanges allow for
unbundling of impressions into individual ones, which facilitates highly granular
targeting, individually customized ads for users, and more efficient allocation of
ads.

We note that the digital advertising industry is more complicated than indicated
by Fig. 5.1,6 with many additional participants offering specialized services, and
with some players performing overlapping functions. Figure 5.2 describes a snap-

Fig. 5.1 The digital advertising supply chain

6Source: http://digitaladblog.com/2015/02/19/online-advertising-ecosystem-explained/.

http://digitaladblog.com/2015/02/19/online-advertising-ecosystem-explained/
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shot of some of the main companies in this industry. In particular, there are a variety
of companies that specialize in providing data that advertisers and publishers use to
augment data that they already possess. For example, advertisers have data about
the purchase patterns and behavior of viewers who have visited their websites.
However, they can augment their knowledge by combining this information with
data about viewers’ income, job history, home ownership, mortgage payments, etc.
(Choi et al. 2017) to develop better target profiles. These additional data on viewers
must be purchased from third parties. Similarly, publishers can use such data to
offer better targeting attributes to advertisers. Data Suppliers, therefore, perform a
very useful function in digital supply chains. Data Management Platforms and Data
Aggregators provide the necessary knowhow and technological platforms to access
such data from multiple sources.

5.3.2 Types of Digital Ads

In the digital advertising parlance, two major ad contexts exist, namely, sponsored
search and display. Sponsored search ads, also called as search ads, are displayed
in response to queries from viewers. When we search using a search engine like
Google for the keyword laptops, the search engine returns the results of the query
but also displays ads from vendors interested in selling laptops. If the viewer clicks
on such an ad, it may ultimately translate into a sale. In contrast, display ads such
as banner ads on a website are served based not on specific queries by a viewer, but
on the known or presumed characteristics of the viewer. In fact, in case of display
ads, the viewer may be browsing for a completely unrelated activity. In search ads,
the goal is to guide the viewer toward a purchase, while display ads are intended
to attract more users. Display ads, therefore, can use a variety of alternatives
to target viewers—contextual targeting (viewers browsing a contextually relevant
site), behavioral targeting (based on the viewers browsing history), or demographic
targeting. Given where a viewer is in terms of his or her purchase decision, search
is much more competitive and the keywords tend to be very valuable. In contrast,
since an impression requires little action from the viewer, display ads tend to be less
valuable. For the same reasons, the content of the ad tends to be very different for
the two types of ads.

Sponsored search and display ads also use different pricing mechanisms. Search
auctions are often cached or hosted auctions. Advertisers pre-specify what they are
willing to pay and this information resides on the search engine’s server. Thus,
the optimization is controlled by the search engine (e.g., Google). In display and
in other real-time bidding auctions, the optimization is maintained by the buying
technology/platform, and the buyers have more influence on the auction.
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Fig. 5.3 Digital advertising revenue for Q2, 2016 and Q2, 2017

Revenues from search ads dwarf those from other forms of digital advertising
(Fig. 5.3),7 totaling about $19.1 billion during the first 6 months of 2017, while
display ads—including banner ads and video ads together—accounted for about
$17.6 billion in revenues.

Classified, lead generations and audio ads accounted for about $3.4 billion in
revenues. Another way to dissect the market for online advertising is by the device to
which the ads are served, e.g., desktop vs. mobile devices. As expected, the volume
of ads delivered to mobile devices has increased steadily, and made up about 54%
of total online ad revenues in the second quarter of 2017 (about $21.7 billion in the
first 6 months of 2017), with a 10-year CAGR of about 15.4%. The split between
mobile and desktop ad revenues (for half year) since 2012 is shown in Fig. 5.4.8

5.3.3 Types of Contracts in the Digital Supply Chain

Broadly speaking, there are two types of contracts for display ads: Guaranteed
delivery (GD) contracts and Non-guaranteed delivery (NGD) contracts.

In GD contracts, publishers agree to show the ads to a particular number of
targeted viewers, and charge advertisers a certain negotiated price based on the
cost-per-impression (CPM) or cost per click (CPC) pricing scheme. Publishers are
responsible for any shortfall in the promised impressions or clicks. GD contracts are
the standard form for selling display ads at premium prices. As a result, the quality

7Source: IAB Internet Advertising Revenue Report, December 2017.
8See footnote 7.
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and relevance of viewers in GD contracts are usually higher than NGD contracts.
A typical GD contract contains the following elements (Bharadwaj et al. 2010):
(1) Viewer targeting: The advertiser can target viewers based on their attributes,
including (a) the slot size and format with the page content that viewers visit,
(b) the keywords searched by the viewers, (c) the demographic information of the
targeted viewers (e.g., their gender, age, ethnicity, education, income, geographical
location), (d) the device and operating systems that viewers use (e.g., PCs, laptops,
and smartphones), and (e) other (behavioral) attributes that the ad network may learn
by tracking viewers’ activities through the cookie files posted in their devices (e.g.,
viewers with potential interest in photography). (2) Campaign Duration: The start
and end times of the contract. (3) Impression Goal: The number of viewers who
are shown the ad. (4) Contract and Penalty Costs: The CPM or CPC price and any
shortfall penalty.

In NGD contracts, ads are displayed to viewers who are won by advertisers
through auctions conducted on ad exchanges. Since the outcome of such auctions
cannot be predicted, it is not possible to guarantee to deliver a specific number of
impressions. However, as these auctions are conducted for one viewer at a time,
they can facilitate a high degree of targeting by advertisers. At the same time, they
also serve as a mechanism for publishers to dispose of their excess inventory (which
cannot be sold through GD contracts) in an effective manner. Auctions are used both
in NGD contracts as well as in sponsored search contracts. The most common form
of the auction used in these contracts is the generalized second price (GSP) auction,
as will be discussed in Sect. 5.4.3. We also refer the reader to Wang et al. (2017)
for a recent discussion of theoretical underpinnings for this auction, and for further
references on auctions.
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The Sequence of Events for an Ad Auction

Auction-based transactions result from structured communications between DSP
and SSP. The information exchanged typically include bid requests, bid responses,
win notices, and ad markup. The sequence of events in a typical transaction made
between an ad agency and a publisher, shown in Fig. 5.5 is as follows: (1) A viewer
visits a website (or a mobile app) (i.e., CNN.com). The page starts to load on
the viewer’s browser. (2) The publisher’s SSP (e.g., PubMatic) shares the viewer
profile (e.g., male, CEO, 46, from Palo Alto, etc.) as well as the available ad slot
information (e.g., a leaderboard ad slot on top of the viewer’s page) with the ad
exchange and makes a bid request. (3) The ad exchange shares this information
with the ad agency’s DSPs and asks them to place their bids. (4) Each agency’s DSP
evaluates the bid request and sends in a bid response. (5) The ad exchange runs a
second-price auction and selects the winning DSP. It sends the winning ad’s markup
and the price to the publisher’s ad server. (6) The publisher’s ad server sends the
ad to the viewer’s browser and posts it on the designated ad slot. All these steps
within the real-time bidding (RTB) auction occur within around 360 ms for every
impression!

Although GD and NGD contracts describe the broadest category of digital ad
contracts, multiple variations of these contracts are observed in practice. The nature
of transactions between advertisers and publishers depends upon how the price is set
(fixed or auction-based) and the type of inventory of ads (reserved or unreserved).
When ad inventory is reserved and the price is fixed, the situation resembles
the traditional model of direct sales, where the terms are negotiated between the
advertiser and the publisher’s sales team. The only difference is that the transactions
are conducted programmatically. In this method, also called automated guaranteed,
advertisers generally do not have the flexibility of picking individual impressions.
The main advantage of this model for advertisers is that they have an assurance that
their campaign will achieve the target number of impressions. Reserved inventory
is typically not sold through auctions. When inventory is unreserved, prices may
be fixed, or determined through an auction. Fixed price deals with unreserved
fixed inventory, may occasionally receive priority over auction-based deals in this
instance. When prices are determined through auctions, the auctions may be open or
invitation-only. Invitation-only auctions (or a private marketplace), available only to
a restricted set of advertisers, offer greater information transparency, more premium
inventory, and priority in auctions. Open auctions are the most common form of
auctions and accessible to all buyers.

5.4 Key Operational Problems in the Digital Supply Chain

In this section, we describe the typical challenges and decisions faced by the
key participants in any digital supply chain—the publishers, advertisers, and the
ad exchange. Figure 5.6 summarizes some of the main decisions made by these
participants.

CNN.com
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Fig. 5.5 The sequence of events in the digital supply chain
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Fig. 5.6 Some of the main decisions made in the digital supply chain

5.4.1 Inventory Allocation (Ad Scheduling)

One of the key operational problems to be solved by publishers (or ad networks)
is inventory allocation, which is the decision about how to optimally allocate
the supply (or inventory) of user visits to the demand, represented by advertising
campaigns.

There are several aspects of the problem that make it complex. Any inventory
allocation must conform to requirements specified by each campaign about user
characteristics. So, for example, when multiple campaigns target the same viewer
attribute(s), the inventory allocation policy must assign users to campaigns in such
a way that each campaign’s requirements about users of specific types are met.
The problem becomes particularly difficult because arrivals and viewer responses
are uncertain. For this reason, we find that a vast majority of papers solve the
deterministic version of the problem. Second, unlike in search advertising, the
goals of display advertising can range from brand and awareness building to
achieving performance, such as a specific number of clicks, impressions, or action.
Thus, a second question relevant to this decision is how does a publisher allocate
inventory across diverse advertiser goals and payment types (CPM, CPC, CPA or
a combination thereof) so that advertiser and publisher objectives are met. Another
source of complexity in answering this question arises because there are different
types of contracts that can be sold for ad inventory—guaranteed delivery and non-
guaranteed delivery. As noted earlier, GD contracts are sold to advertisers far in
advance of actual impressions, while under NGD contracts, the advertisers bid for
impressions in ad exchanges in real-time. Clearly, the same impression qualifies
for both types of contracts. Therefore, the publisher must decide how to allocate
inventory to both GD and NGD advertising campaigns (on spot markets), while still
ensuring that the guaranteed advertiser objectives are met, and publisher revenue is
maximized.
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The environment within which these decisions are made also presents several
technical challenges. Clearly, the size of the problems in terms of the number of
decision variables and constraints is large. Therefore, in order for the problem to
be solvable in real-time, solution methods must leverage any special properties
of the mathematical structure, and any demands on the computing environment
must also be addressed (for example, memory considerations). The large number
of viewer segments makes parameter estimation a particularly challenging problem
(our review does not dive into this aspect, since it is likely to be a substantial review
in itself). Obviously, any dynamic environment like digital advertising must rely on
effective and timely feedback about the outcomes of decisions made. For example,
how has each campaign performed with respect to its goals? How effective have
the campaign bidding strategies been? Did the impressions served actually conform
to the campaign objectives? Unfortunately, our understanding is that technological
constraints preclude access to such information in a timely manner and at the desired
level of granularity.

We will review the literature on inventory allocation issues separately for
the cases of display and search ads. Both types of ads have been analyzed by
deterministic and stochastic model formulations. Since some of these models
involve bidding, some of these papers are emphasized again in Sect. 5.4.3, where
we discuss bidding strategies.

5.4.1.1 Display Ads Inventory Allocation: Deterministic Models

Turner (2012) focuses on the problem faced by an ad network that manages
guaranteed targeted display advertising. The model in this paper is representative
of the approaches adopted in many other papers that consider deterministic display
ad inventory allocation. The author develops a single period planning model to
allocate impressions to multiple audience segments by formulating a transportation
problem with a quadratic objective, which is used to deal with audience uncertainty.
The goal is to develop a plan that has a high reach (i.e., a large number of unique
viewers) and low variance (i.e., since the actual number of impressions is a random
variable, its variance should be low). The idea is that advertisers want impressions
from all audience segments that match the targeting requirements specified, not just
the particular subset of the audience that is easiest (or cheapest) for the ad network to
deliver. In this context, minimizing a quadratic objective spreads impressions across
audience segments by minimizing the L2 distance to the “most representative”
allocation; i.e., one that gives each campaign an equal proportion of each audience
segment.

There are multiple viewer types whose supply is random. There is uncertainty in
the arrival of viewers and the number of ads on a page. Turner (2012) replaces the
supply for each viewer type by a deterministic value equal to its mean, which allows
him to develop a deterministic formulation. Let K be the set of ad campaigns. Each
campaign k ∈ K requests its ad to be displayed to gk unique viewers (impressions
goal). Let V be the set of viewer types. Each viewer type v ∈ V refers to a distinct
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partition (segment) in the viewers’ population and has a deterministic supply sv . Let
Vk be the set of viewer types targeted by campaign k and Kv be the set of campaigns
that target viewer type v. When a viewer of type v visits, only ads from the set Kv are
displayed. The set Kv might contain several ad campaigns that target viewer type
v. For example, if v is a male living in California interested in photography, then
he could be shown an ad targeting anyone living in California, anyone interested
in photography, or a male interested in photography. Let xvk be the number of
impressions of viewer type v assigned to campaign k and pvk be the proportion
of the expected number of impressions of viewer type v assigned to campaign k.
Then, the deterministic problem can be formulated in two different ways shown
below. In both formulations, the constraints are that impression goals must be met
and the number of impressions delivered must be no more than the viewer supply.
The objective functions are minimizing the weighted squares of allocations to ensure
uniformity. The resulting equivalent formulations are

(Impression Formulation) min
xvk≥0

∑

k∈K,v∈Vk

x2
vk

sv
, (5.1)

s.t.
∑

v∈Vk

xvk = gk, k ∈ K, (impression goals), (5.2)

∑

k∈Kv

xvk ≤ sv, v ∈ V, (supply constraints). (5.3)

(Proportion Formulation) min
pvk≥0

∑

k∈K,v∈Vk

svp
2
vk, (5.4)

s.t.
∑

v∈Vk

svpvk = gk, k ∈ K, (impression goals), (5.5)

∑

k∈Kv

pvk ≤ 1, v ∈ V, (supply constraints). (5.6)

Once the solution of the transportation problem is determined, it is used to compute
the mean and variance of metrics such as the actual number of impressions served
to a campaign. He also develops methodologies to aggregate the audience segments
into a smaller number of clusters to render the problem size manageable (due to the
large number of audience segments in practice).

Bharadwaj et al. (2012) develop a similar formulation, with an objective function
that is the sum of penalties associated with under-delivery of impressions to
contracts and a cost associated with deviation from the target representativeness,
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i.e., the total L2 distance between the actual and target allocation to impressions.
Their main goal, however, is to develop a solution methodology that is efficient,
scalable, and robust.

Deza et al. (2015) also formulate a problem with a quadratic objective that
determines optimal proportions of viewers allocated to campaigns, but model a
chance constraint, a constraint that specifies that the probability that a campaign’s
target is unfilled is smaller than a specified amount. They develop a sample
approximation program with a branching heuristic, and convex approximations
under Normal and distribution-free viewer supply assumptions, with an iterative
method for improving feasible solutions.

In general, advertising contracts do not differentiate between multiple impres-
sions of an ad made by the same viewer, and distinct impressions made by different
viewers. However, increasingly, advertisers are getting sensitized to not only the
number of unique users (reach) who view their ads, but also the frequency with
which individuals are served the same ad. Hojjat et al. (2017) consider a new form
of contract that allows advertisers to specify reach, as well as frequency. They
develop an optimizing methodology that also incorporates constraints to ensure
minimal under-delivery and appropriate spread of each campaign across its targeted
viewer types. Their method employs pre-generated patterns to schedule the exact
sequence of ads for each viewer, and can be implemented efficiently using a two-
phase algorithm that employs column generation in a hierarchical scheme with three
parallelizable components.

Mookerjee et al. (2017) take a different approach and develop a threshold based
policy to determine when an ad should be served to a viewer to maximize revenue
earned through clicks. They develop a predictive model of a visitor clicking on a
given ad, which is used to determine a threshold to decide whether or not to show
an ad to the visitor. Their decision model’s objective is to maximize the advertising
firm’s revenue subject to a click-through-rate constraint. They study and contrast
two competing solutions: (1) a static solution and (2) a rolling-horizon solution that
resolves the problem at certain points in the planning horizon. Their solution was
also implemented at an Internet advertising firm.

5.4.1.2 Search Ads Inventory Allocation: Deterministic Models

Langheinrich et al. (1999) is one of the early papers on the inventory allocation
problem in search advertising. Their model is representative of the approaches used
by many others for this problem. In contrast to personalized ad service strategies,
which rely on a significant amount of information about the viewer or user, the
ad allocation model presented in Langheinrich et al. (1999) (called ADWIZ) relies
primarily on the keywords used by the user, or the URL of the page where the user
has arrived.

Suppose that m ads A1, . . . , Am must be displayed depending on which of the
search keywords W1, . . . ,Wn is input. Let hj be the desired display rate for Aj in
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the next period defined as the number of remaining impressions for Aj , divided by
the number of remaining periods, normalized such that

∑
m hj = 1. Also, let ki be

the probability that Wi is searched and cij be the click-through rate (CTR) of Aj

when Wj is searched. The decision variable, dij , is the probability of showing Ai

when Wj is searched. The optimization problem is

min
dij ≥0

m∑

i=1

n∑

j=1

cij kidij , (5.7)

s.t.
m∑

i=1

kidij = hj , ∀j,

n∑

j=1

dij = 1, ∀i. (5.8)

Depending on special restrictions on ads or keywords, additional constraints can
be added. If some dij are set to zero, then this may make an estimation of the ad-
keyword combination’s CTR value become difficult. Therefore, the authors set a
minimum display rate for each ad-keyword combination, which is gradually lowered
as a function of the sample size, by adding the constraint dij ≥ 1/(2m

√
Dij + 1),

where Dij is the number of times that Aj has been displayed for Wi so far.
In their evaluation, they compared their learning method with two other simple

methods: the method of selecting an ad randomly (the random selection method)
and the method of selecting an ad with the maximum click-through rate for the
given keyword in the current data (the max click rate method). While it is true that
the max click-through rate method achieves the highest total click-through rate, with
this method, half the ads did not get displayed enough. Thus, this method is most
likely not usable in practice. The number of displays for the ads is balanced for both
the random selection method and our method, but the total number of clicks yielded
by the LP-based method is significantly higher.

Nakamura and Abe (2005) extend the formulation in Langheinrich et al. (1999)
to address a number of technical challenges associated with the estimation of click-
through rates and optimization of display probabilities. In order to address the
exploration-exploitation trade-off inherent in the LP approach used in Langheinrich
et al. (1999), instead of using click-through rate as the objective function, they use
the Gittins Index. To address estimation challenges due to the sparseness of data,
they devise a clustering methodology that groups the attributes that have similar
click-through statistics. Tomlin (2000) points out the problems associated with LP
optimal solution. Since such solutions are corner-point solutions, some words may
be assigned to a majority of ads and others to none at all (called over-targeting). He
proposes an entropy-based modeling approach to smoothen the objective function
that prevents any all-or-nothing solutions.

Chickering and Heckerman (2003) extend the Langheinrich et al. (1999) model
by incorporating the impression context to gain additional insights about the viewer.
A publisher faces a supply of viewers consisting of I types where each viewer type
is a disjoint audience segment or partition in the viewers’ population. The publisher
sells the impressions to J advertising campaigns (also known as contracts). Each



118 N. Agrawal et al.

campaign j (j = 1, . . . , J ) requests that its ad is shown to qj viewers from the
viewer types targeted by the campaign. Let xi be the overall supply of viewers
of type i (i = 1, . . . , I ) and yij be the number of viewers of type i allocated to
campaign j . All campaigns start simultaneously at time 0 and end at time T . The
authors determine the optimal yij to maximize the overall expected click-through
probability of the website. The objective problem is

max
yij ≥0

I∑

i=1

J∑

j=1

pij

yij

N
, (5.9)

s.t.
J∑

j=1

yij ≤ xi,

I∑

i=1

yij ≥ qj . (5.10)

In this formula, pij is the probability that a viewer of type i clicks an ad from
campaign j and N is the total number of viewers arriving during T periods.

Rusmevichientong and Williamson (2006) sort keywords based on their profit-
to-cost ratio while selecting keywords, and show that their algorithm performs
better than typical multi-armed bandit approaches. Özlük and Cholette (2007)
also consider a deterministic formulation to allocate an advertising budget among
multiple keywords for an advertiser. They show that the ratio of the CTR values
of the keywords and the price elasticities of the response functions determines the
bid for any keyword. They also examine when an advertiser should increase the
number of keywords used, and compute the impact of an additional keyword under
the assumption of constant elasticity.

Zhao and Nagurney (2005) determine the optimal marketing strategies when an
advertiser is displaying its ad in n websites. Let ei denote the number of impressions
allocated to the ad on website i with the CPM price. Let ri(ei) be the CTR on
website i and C be the advertiser’s budget. Then, the advertiser seeks to maximize
the CTR, subject to the budget constraint as

max
ei≥0

n∑

i=1

ri(ei), s.t.
n∑

i=1

ciei ≤ C. (5.11)

McAfee et al. (2013) study the optimal allocation of viewers to different
campaigns such that each ad is displayed to sufficiently large (i.e., representative)
numbers of viewers from each type it has targeted. Let V and K be the set of
viewer types and ad campaigns, respectively. Let sv be the supply of viewers of
type v ∈ V and yvk be the number of viewers of type v allocated to campaign
k ∈ K . Let τvk = 1 if viewers v are targeted by campaign k and τvk = 0, otherwise.
Then, the total number of viewers serving campaign k is Yk = ∑

v∈V τvkyvk.

Campaign k specifies Yk up-front (impressions goal). Let τvksv/
∑

v′∈V τv′ksv′ be
the representative (fair) market share of viewers of type v, directed to campaign
k, and τvksv/

∑
v′∈V τv′kyv′k be the proportion of viewers of type v allocated to
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campaign k. In addition, let campaign k have priority Wk.The optimization problem
is minimizing the weighted squared difference of the allocated and representative
shares for each campaign as

min
yvk≥0

1

2

∑

k∈K

WkYk

∑

v∈V

∑
v′∈V τv′ksv′

τvksv

(
τvksv∑

v′∈V τv′ksv′
− τvksv

Yk

)2

(5.12)

s.t.
∑

k∈K

yvk ≤ sv , for all v ∈ V (supply constraints), (5.13)

Yk =
∑

v∈V

τvkyvk , for all k ∈ K (demand constraints), (5.14)

in which the term (
∑

v′∈V τv′ksv′)/τvksv is the given weight to each campaign’s
representative allocation.

5.4.1.3 Stochastic Models

The papers discussed above treat the deterministic inventory-allocation problem.
The underlying problem is a dynamic resource allocation problem. In the computer
science literature, this is also referred to as the online stochastic optimization
problem. Feldman et al. (2010) consider a general version of this problem, of which
the display ads problem is a special case. In the display ads allocation (DA) problem,
there is a set J of m advertisers who have paid a web publisher for their ads to be
shown to visitors of the website. The contract bought by advertiser j specifies an
integer upper bound on the number n(j) of impressions that j is willing to pay for.
A set I of impressions arrives online, each impression i with a value wij ≥ 0 for
advertiser j . Each impression can be assigned to at most one advertiser, i.e., there
are m options for each impression, and if the impression i is allocated advertiser
j , then it is denoted with aij = 1. The goal is to maximize the value of all the
assigned impressions. The authors consider a random-order stochastic model, where
the order in which impressions arrive is random, but no other prior information is
known. Their training-based primal-dual algorithm for the stochastic packing LP
problem observes the first ε fraction of the input and then solves an LP on this
instance. For each advertiser, the corresponding dual variable βj extracted from
this LP serves as a (posted) price for the remaining impressions, and the algorithm
assigns an impression to advertiser j that maximizes wij − βj . They prove that this
algorithm provides a (1 − ε) percent of the optimal solution.

Online optimization methods have also been considered by Feldman et al.
(2009a) and Feldman et al. (2009b) for display advertising, and by Vazirani et al.
(2005), Buchbinder et al. (2007), Goel and Mehta (2008), and Devanur and Hayes
(2009) for the ad words problem. Other papers that address ad inventory scheduling
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include Roels and Fridgeirsdottir (2009) who formulate the display ad scheduling
problem as a stochastic dynamic program, but solve its deterministic equivalent.
Kumar et al. (2006) develop a heuristic and a genetic algorithm approach for the
search ads case.

5.4.1.4 Guaranteed and Non-guaranteed Delivery Contracts

Because of the increasing role of ad exchanges in real-time transactions of impres-
sions, publishers must decide whether to assign an arriving impression to one of
their GD campaigns or sell it in the spot market through the ad exchange. Therefore,
the publisher must evaluate, in real-time, the trade-off between the short-term and
potentially higher revenue from the ad exchange (NGD contracts), and the long-term
benefit of making good on the promise of delivery to GD contracts.

Yang et al. (2010) develop a deterministic formulation of the problem as a
bipartite graph. Their way of modeling is typical among the papers that study
deterministic contracts. Demand nodes are ad campaigns and supply nodes are
viewers targeted by campaigns. Let V and K be the set of viewer types and ad
campaigns, respectively. Let sv be the supply of viewers of type v ∈ V and rv
be the payout for v ∈ V by NGD campaigns. Let gk be the impressions goal
of campaign k and Vk be the set of viewer types that it targets. Let yvk be the
amount of viewers type v allocated to the GD campaign k. Then, zv = sv −∑

k yvk

will be the number of viewers of type v allocated to the NGD campaigns. The
objective function for the NGD campaigns is to maximize the publisher’s revenue
by allocating the viewers with the highest values to the NGD contracts—that
is, maxyvk

∑
v∈V rvzv . The objective of GD campaigns is to maximize the brand

awareness/reach or performance (clicks, conversions) by ensuring each campaign k

is shown to a representative number of viewers from each type v ∈ Kv (i.e., θvk =
(sv/

∑
i∈Kv

si)gk). Define Wk as the importance of the representative allocation to
campaign k. Then, the authors define the objective function for the GD campaigns
as

min
yvk

∑

k∈K

∑

v∈Kv

Wk

2θvk

(yvk − θvk)
2 . (5.15)

Constraints are specified for demand (for GD contracts), supply (each viewer can
be allocated to only one campaign), and non-negativity similar to the deterministic
problem formulation in (5.1).

In contrast to Yang et al. (2010), Balseiro et al. (2014) include an ad exchange
besides the publisher’s own pages. Advertisers can buy display ad placements by
negotiating guaranteed contracts directly with publishers. Since the publisher signs
many such contracts, it must then decide how to allocate arriving impressions to
contracts that correspond to the attributes of the viewer. The assignment is done so
as to maximize placement quality: an example of a metric for this is click-through
rate. Since guaranteed contracts are booked in advance, they suffer from an inability
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to respond to instantaneous changes in market conditions. As mentioned earlier,
ad exchanges (like DoubleClick, OpenX, and AdECN) deal with real-time market
conditions by offering a spot market for ads. If the option to use ad exchanges is
present, the publisher’s problem becomes complicated. For each viewer, it must
decide whether to assign the viewer to an advertiser on the exchange, and at what
price, or to an advertiser with whom a guaranteed contract has been booked. The
revenue may be higher on the exchange but the quality of the advertiser may be
lower.

They formulate the problem as a combination of a capacity allocation problem
and a dynamic pricing problem. They assume a single ad slot, and a known number
of N viewers who arrive one at a time. Each arriving viewer is first offered to the
ad exchange at a reservation price p, which is determined by optimizing Yield =
revenue(AdX) + γ × quality(advertisers), where γ is a parameter that can assist
in balancing the trade-off between revenue from the ad exchange and the quality of
advertisers. Bids are accepted with cumulative probability F(p, u), where u is the
user’s information. The optimization problem becomes maxp≥0{(1 − F(p, u)) +
F(p; u)c}, where c is the publisher’s opportunity cost for selling its ad inventory
in the exchange. If none of the prices bid on the exchange exceed this reservation
price, the viewer is assigned to the guaranteed contract whose placement quality
exceeds its bid price by the largest amount. Ties among contracts are resolved by
randomizing according to a probability distribution that can be predetermined by
solving an assignment problem.

The overall problem can be formulated as a dynamic program indexed by the
number of remaining viewers. Because of its large state space, they approximate
the problem with its deterministic version in which (1) the policy is independent
of the history but dependent on the realization of the vector of attributes (recall
that placement qualities are deterministically determined based on the attributes),
(2) capacity constraints are met in expectation, and (3) controls are allowed to
randomize. They derive an efficient solution policy and prove the asymptotic
optimality of this policy in terms of any arbitrary trade-off between the quality
of delivered reservation ads and revenue from the exchange, and show that their
policy approximates any Pareto-optimal point on the quality-versus-revenue curve.
Experimental results on data derived from real publisher inventory confirm that there
are significant benefits for publishers if they jointly optimize over both channels.

Celis et al. (2014) propose an auction sales mechanism in online display
advertising in which bidders can “buy-it-now” at a posted price, or “take-a-chance”
in an auction where the top d > 1 bidders are equally likely to win (random
allocation). Mookerjee et al. (2016) provide an approach to manage an on-going
Internet ad campaign that substantially improves the number of clicks and the
revenue earned from clicks. They describe the problem faced by Chitika, which
contracts with publishers to place relevant ads over a specified period on publisher
websites. Ad revenue accrues to the firm and the publisher only if a visitor clicks
on an ad. This might imply that all visitors to the publisher’s website be shown
ads. However, this is not the case if the publisher imposes a CTR constraint on the
advertising firm. This performance constraint captures the publisher’s desire to limit
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ad clutter on the website and hold the advertising firm responsible for the publisher’s
opportunity cost of showing an ad that did not result in a click. The paper develops
a predictive model of a visitor clicking on a given ad. Using this prediction of the
probability of a click, the authors develop a decision model that uses a threshold
to decide whether to show an ad to the visitor. The decision model’s objective is to
maximize the advertising firm’s revenue subject to a click-through-rate constraint.

Chen (2017) proposes a stylized model in which an online publisher sells its
display ad space sequentially in two markets. In the first market, a set of long-term
guaranteed advertisers negotiate with the publisher; once they enter an agreement,
the publisher commits to deliver a pre-specified number of impressions within
a fixed time frame through a guaranteed contract. In the second market, new
advertisers arrive and express their interest in the display ads. This “spot” market
runs an auction to allocate the display ad spaces every period among the short-lived
advertisers. Given the dynamic nature and the unpredictable supply in the display
ads industry, even in the GD contract, the publisher cannot promise that a certain
number of impressions will be delivered within a time frame for sure. Thus, the
GD contract specifies a per unit penalty if the promised number of impressions are
not delivered by the end date specified in the contract. In addition, the publisher
partially shares the instantaneous benefit from the guaranteed advertiser upon
successfully delivering the promised impressions over time. This benevolence may
be rationalized by the fact that the publisher is engaged in the long-term contractual
relationship with the guaranteed advertiser. The paper uses the mechanism design
approach to characterize the optimal dynamic selling scheme.

5.4.1.5 Number of Ad Slots and Ad Placement on Webpages

Another question related to how inventory allocation decisions are made is how
many ad slots are displayed on any page. This question is the focus of Kim
et al. (2012), where the authors study the challenge that search engines face in
determining the number of ad slots to display on their page. Obviously, this decision
is related to those of advertiser slot assignments, and the payments per click based on
the advertiser’s bids and the quality of their ads. More ad slots potentially generate
incremental revenue gains because of the additional ads displayed. However, it may
increase the clutter, leading to a reduction in the number of clicks to any individual
ad, and therefore, its value. Thus, the number of ad slots has a significant impact
on the search engine’s profit. They further explore whether the number of ad slots
should be keyword specific.

The problem is modeled as a two-stage game between the search engine and
advertisers. In the first stage, the search engine sets up a GSP auction to sell ads and
announce the number of ad slots for a keyword to N potential advertisers. The search
engine knows the distribution of the advertisers’ valuations and click-through rates,
but not their values. The position specific click-through rate (CTR) is not advertiser
specific, and is known. In the second stage, the values of the valuation and CTR are
revealed and the advertisers participate in the GSP by bidding per click for their ads.



5 Digital Advertising: A Literature Review 123

Based on Nash equilibrium results, they characterize the optimal number of slots. If
additional slots do not affect clicks from existing slots, a global optimum number of
slots may exist if the valuation distribution has an increasing hazard rate or is log-
concave. In comparison, if additional slots cannibalize clicks, the optimal number
of slots may be greater or smaller.

This paper extends the earlier work in Feng et al. (2007), Balachander et al.
(2009), and Katona and Sarvary (2010). Katona and Sarvary (2010) consider the
interaction between the list of organic search results and the list of advertisers
featured on the results page of the search engine and show that highly relevant
advertisers who tend to be featured high on the organic list may not bid high enough
to be featured highly on the sponsored list. They generate normative guidelines for
both advertisers and the search engine on how to buy and sell sponsored links. For
instance, they find that in some cases, a search engine can attain higher revenues by
displaying fewer sponsored links. In contrast, Feng et al. (2007) and Balachander
et al. (2009) assume that the number of ad slots are pre-specified, and compare
alternative GSP auction policies for determining bidders’ ranks and payments per
click. These and related papers build on early work done on GSP auctions by
Edelman et al. (2007) and Varian (2007).

Since advertisements on the web are specified by geometry and display fre-
quency, Kumar et al. (2006) consider both of these factors in developing a solution
to the advertisement scheduling problem. Given a set of ads, a schedule of the ads
specifies which ads are to be displayed at the same time. Each ad must be displayed
with the correct frequency, allocated enough space for the specified geometry, and
it must be possible for all the ads to be displayed simultaneously to be arranged in
the space available for advertising. They show the problem to be NP-hard, develop
a heuristic called LSMF to solve the problem, and then combine it with a genetic
algorithm (GA) to develop a hybrid GA. Adler et al. (2002) determine the optimal
schedule by finding a solution to a new variant of the bin packing problem, where
there is a number of copies of each item to be placed into the bins, and they provide
an efficient algorithm for the new bin packing problem. Amiri and Menon (2006)
extend it to a more realistic setting, where the customer is allowed to specify a set
of acceptable display frequencies. The Lagrangian decomposition-based solution
approaches presented in this chapter are observed to provide good schedules in a
reasonable period of time. Deane and Agarwal (2012) allow for variable display
frequencies in the context of banner ads.

5.4.2 Ad Pacing/Budget Pacing

A very important consideration for advertisers in managing digital advertising is
the rate with which ads are delivered to viewers over time. Obviously, this directly
affects the rate with which the advertising budget is consumed over the same
period. Therefore, ad pacing and budget pacing are related problems. For NGD
contracts, the bidder (the advertiser or its agent) must address this challenge. In
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Fig. 5.7 Budget pacing strategies. (a) Premature stop. (b) Fluctuating budget. (c) Uniform pacing.
(d) Traffic-based pacing. (e) Performance-based pacing

case of GD contracts, recall that the publisher must deliver a certain number of
impressions (or actions) for each campaign over a given length of time, within
a fixed budget. Advertisers expect that these campaigns are managed so the
budget is not consumed before the end of the campaign, which is referred to
as Premature Campaign Stop (Fig. 5.7a, Lee et al. 2013). This is a challenge
because the advertisers may miss out on valuable opportunities in the remaining
portion of the campaign duration. Advertisers also attempt to analyze the outcomes
from their campaigns. This becomes difficult if the delivery of impressions (hence
budget spend) fluctuates widely over any period of time (called as Fluctuation in
Spend, Fig. 5.7b). Premature campaign stops also lead to a skewed representation of
target audience segments. Moreover, as certain campaigns end prematurely, market
competition reduces, which may result in reduced revenue. Finally, because of
technical delays in reporting on the performance of campaigns, some campaigns
may over-spend and over-deliver, which may be suboptimal overall (Agrawal et al.
2014). Thus, depending on the type of contract, pacing is a problem for advertisers
as well as publishers.

A commonly sought-after strategy is the Uniform Pacing policy (Fig. 5.7c),
which attempts to spend the available ad budget uniformly. Unfortunately, there
are two main challenges with this implementing strategy. The viewer traffic may
not be uniform during a campaign period, which means that the budget pacing
might have to mirror traffic patterns, as seen in Fig. 5.7d. Alternatively, the quality
of the traffic, as measured by metrics such as CPC, CTR or others, may not be
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uniform. This implies that the budget spend might have to mirror the trajectory of
these performance metrics, as seen in Fig. 5.7e.

In general, there are two approaches to control the rate at which ad budget is
spent, which is referred to as throttling in the literature. One approach is bid price
throttling, i.e., modifying bid prices. Bidding a smaller amount reduces the amount
spent per bid and the likelihood that the bid wins, which reduces the expected
spending rate. An alternative approach is probabilistic throttling, where the rate at
which bids are submitted is randomly influenced. Both approaches are described in
the research reviewed below.

In both cases, a key responsibility of campaign managers is to see if campaigns
are tracking to plan, and take actions to accelerate campaigns that are falling
behind, and decelerate those that may be ahead. This also means that the bidding
strategy and the budget pacing strategy are tightly connected. Since we will devote
Sect. 5.4.3 to reviewing the literature on bidding, here, we will only provide a brief
overview of approaches used to influence the budget pacing. Details about some of
these papers will be shown in Sect. 5.4.3.

Finally, we note that one could also view the pacing problem as a variant of
the inventory allocation problem because pacing essentially implies allocation of ad
inventory to campaigns over time. Therefore, the reader will note some similarities
between the approaches used in papers described earlier and those described here.

Zhang et al. (2012) consider the problem of jointly optimizing bid prices and
allocation of budget to specific campaigns in the context of sponsored search.
Suppose that an advertiser has m campaigns C1, C2, . . . , Cm. Campaign Ci is
denoted with Ci = {g(0)

i , Di,Ki} in which g
(0)
i is the original periodical (e.g.,

monthly) budget set by the advertiser, Di denotes the set of ads included in
campaign Ci , and Ki denotes the set of keywords in campaign Ci . The ad set Di

can be written as Di = {di,1, . . . , di,li } where li is the number of ads in Ci and di,s

(s = 1, 2, . . . , li ) denotes the sth ad in Ci . The bid keyword set Ki can be written
as Ki = {Ki,1, . . . , Ki,ni

}, with Ki,t = (ki,t , b
(0)
i,t , vi,t ) (t = 1, 2, . . . , ni), where

ki,t is a keyword chosen by Ci , b
(0)
i,t is the original bid submitted for it, and vi,t is

its value per click. When a viewer does a search, the search engine might match
Ki,t from campaign Ci with it and display a related ad di,s in Ci . The information
of this candidate item for the auction can be summarized by ωi,s,t = (di,s , Ki,t )

(t = 1, . . . , ni, s = 1, 2, . . . , li ), which the authors call the order item ωi,s,t , or
more generally the item ω ∈ Ci . Let Φ be the maximum number of slots on each
search result page. In addition, let ρφ (φ = 1, . . . , Φ) be the position of the ad on
the page. Let θ be the number of auctions (θ = 1, . . . , Φ). Furthermore, let τφrω,θ

be CTR in which rω,θ denotes the quality score of the item ω in auction θ , and τφ

denotes the position bias at slot ρφ . Let pω

(
ρφ |bω

)
be the probability for item ω to

be ranked in slot ρφ when its bid is bω. In addition, let cω,φ,θ be the cost for a click
on ω in auction θ when it is ranked on position ρφ . Let gi (i = 1, . . . , m) and bω

denote the variables of campaign budgets and keyword bid prices. Furthermore, let
εg and εb be the minimum campaign budget and bid price. The authors determine
the optimal prices and budgets allocated to campaigns for keywords using sequential
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quadratic programming. An important input in this analysis is the probability of
winning for a given bid price, pω

(
ρφ |bω

)
, which is determined by fitting a normal

distribution to the history of winning prices. The formulation in any iteration of the
sequential method is

max
gi∈[εg,+∞),

bω∈[εb,vω]

{ m∑

i=1

∑

ω∈Ci

Θω∑

θ=1

Φ∑

φ=1

pω(ρφ |bω)(τφrω,θ )(vω − cω,φ,θ )

}
(5.16)

s.t.
m∑

i=1

gi =
m∑

i=1

g
(0)
i , (5.17)

0 ≤
∑

ω∈Ci

Θω∑

θ=1

Φ∑

φ=1

pω

(
ρφ |bω

)
τφrω,θ cω,φ,θ ≤ gi, i = 1, . . . , m.

(5.18)

The objective function is the product of three terms: the probability for an ad to be
ranked in position ρφ when its bid price is bω, the actual probability of an ad being
clicked, and the expected revenue from a clicked ad. The first constraint indicates
that the total campaign budget should be the same between consecutive iterations
of the optimization steps. The second constraint specifies that the actual amount
spent on a campaign should be less than its budget. The third constraint specifies
a threshold limit on a campaign’s budget, and the last constraint specifies bounds
on the bid. The problem is formulated as a single period problem. Therefore, the
implied assumption is that the solution is applied in the steady-state, or that it will be
determined at the beginning of each period within the campaigns’ planning horizon.
Using simulation on the sponsored search log from a commercial search engine,
the authors show that their proposed methodology can effectively help advertisers
improve their campaign performance with respect to metrics, such as click number,
cost per click (CPC), and advertiser revenue while also helping the search engine to
increase its revenue.

Agarwal et al. (2014) have developed an algorithmic approach to implementing
budget pacing for campaigns during any day, where the day is assumed to consist
of discrete time periods. The algorithm begins with a forecast of the cumulative
number of eligible impressions for each campaign by the start of each time period
within the day. The goal is to ensure that the proportion of the total daily budget for
a campaign that is spent by a time period is the same as the ratio of the cumulative
forecast of eligible impressions by that time period and the total forecast for the
campaign. This goal is implemented by probabilistically throttling the bidding rate.
This probability is adjusted in every period (although this paper does not report on an
analytical or optimization-based approach for determining this). The authors assess
the impact of their methodology on advertiser-centric measures such as campaign
lifetime and the number of campaigns served, publisher-centric measures such as the
cost-per-request and overdelivery, and member-centric measures such as the number
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of unique campaigns served. Note that the approach in this chapter contrasts with
those in Abrams et al. (2007), Borgs et al. (2007), and Vazirani et al. (2005), which
propose throttling the bid. With bid price throttling, it may require bid prices lower
than reserve prices set for bidding. This restriction may prevent extension of the life
of campaigns. Also, probabilistic throttling does not require a recalculation of bids,
which must be done under the bid throttling scheme.

Xu et al. (2015) focus on the problem faced by DSPs (governed by ad agencies)
that are involved in managing multiple campaigns on behalf of advertisers by
participating in RTB in ad exchanges. Different advertisers have different goals.
For branding campaigns, the goal is to reach a broad audience by spending out
the budget, while ensuring campaign performance metrics are as good as possible.
Performance campaigns focus primarily on performance goals (e.g., effective cost
per click = total cost/number of clicks), and spend as much of the budget as
possible. Like Agarwal et al. (2014), they use probabilistic throttling as well. The
key decision variable is ri , called the point pacing rate, for the ith viewer, which
determines si = Bernoulli(ri), the probability with which the ad is allowed to
participate in the bidding for that viewer. The spending plan for the planning period
1, . . . , K , is described by the vector, B = (B(1), . . . , B(K)), and the corresponding
actual spending pattern by C = (C(1), . . . , C(K)). The deviation between the
plan and actual spending can be quantified by a variance-type penalty function

such as Ω(C,B) =
√

(1/K)
∑K

t=1(C
(t) − B(t))2. The authors develop separate

formulations for each case, where the goal is to optimize performance goals with
respect to ri subject to budget spend

∑K
t=1 C(t) = ∑K

t=1 B(t) and Ω(C,B) ≤ ε (for
a given tolerance ε), or minimize Ω(C,B) subject to ensuring certain performance
goals and the constraint on the budget as

∑K
t=1 B(t) − ∑K

t=1 C(t) ≤ ε. Since
the resulting problem formulations are difficult to optimize, they develop heuristic
solution algorithms and test them on real data.

Balseiro et al. (2017) compare the system equilibria of different budget manage-
ment mechanisms provided by advertising platforms to control the expenditures of
advertisers. Throttling controls ad expenditures by precluding a buyer from bidding.
Thresholding allows a buyer to participate if its bid is above a fixed threshold.
Reserve pricing is similar to thresholding, but the winner is charged the maximum
of the second-highest bid and its reserve price, which leads to higher payments. Bid
shading allows the buyers to participate in all auctions, but each bid is reduced, i.e.,
shaded, by a factor. The multiplicative boosting mechanism modifies the allocation
rule which leads to higher payments. Thus, these mechanisms control expenditures
by reducing bids (bid shading), modifying the allocation (multiplicative boosting),
excluding buyers (throttling and thresholding), or imposing reserve prices (reserve
pricing). The authors show that from the seller’s perspective, imposing reserve
prices and excluding buyers are more effective in controlling expenditures, and
budgets can be depleted with fewer items sold, leading to higher seller profits. From
the buyers’ perspective, lower bids are more beneficial than fewer competitors, and
bid shading leads to the highest buyer utility.
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The mentioned papers above build upon earlier work done by several authors.
For example, Lee et al. (2013) present an online approach to the smooth budget
delivery problem while optimizing the conversion performance by selecting high-
quality impressions and adjusting bid prices based on prior performance distribution
by distributing the budget optimally across time. Zhou et al. (2008) also consider the
budget constraint, albeit in the context of sponsored search and model it as an online
knapsack problem. Charles et al. (2013) present a game-theoretic model for the
outcome of an ideal budget smoothing algorithm. The authors propose the notion
of regret-free budget smoothing policies whose outcomes throttle each advertiser
optimally, given the participation of the other advertisers. They show that regret-
free budget smoothing policies always exist, and with single slot auctions they can
give a polynomial-time smoothing algorithm. Yang et al. (2014) extend the basic
problem to include multiple campaigns that may be “coupled” due to overlaps in
the campaign content, duration of the promotional period or target regions. They
develop an optimal control to maximize the total payoff from advertising activities
subject to budget constraints.

5.4.3 Ad Pricing

In both sponsored search and display advertising contexts, publishers often face
uncertain demand from advertisers to post their ads and uncertain traffic of viewers
whose click behavior is also uncertain. In the attempt to monetize this traffic in such
an inherently uncertain environment, pricing of ads is one of the most challenging
operational decisions that web publishers face. In GD contracts, the publishers (or ad
networks) make the ad price decisions (with or without negotiating with advertisers).
However, in NGD and sponsored search contracts, the price that each advertiser pays
for posting its ad is the result of an auction.

Sponsored search contracts are typically based on CPC, while in display
contracts CPM is the more common pricing scheme. The decision regarding whether
the pricing scheme must be CPC or CPM depends on the campaign’s goal. CPM
is standard when the campaign’s goal is to strengthen the advertiser’s brand and
not necessarily to drive clicks. For instance, when CNN.com posts its own ads
(house ads) on its website, its goal is not that viewers click on them; rather it is
to strengthen its brand. CPC is used when an advertiser is focused on driving clicks.
This suggests that, an advertiser’s ad might get many free impressions between every
two clicks, but in reality, these “free impression” prices are indirectly accounted
for in the CPC price. As shown in some of the papers described in this section,
in general, if an advertiser’s ad has a low CTR, then CPC might be the preferred
pricing option to avoid unnecessary payments for impressions, but if its ad performs
very well (i.e., its CTR is higher than some threshold), paying based on CPC can
become very expensive and the advertiser might be better off switching to CPM.
A common approach in practice to switch between the two pricing schemes is by
assuming CT R ≈ CPI/CPC, where CPI is the price of an impression (i.e.,

CNN.com
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CPI = CPM/1000) and CT R is the average long-run number of clicks made on
an ad divided by the number of times it is seen by viewers. This conversion approach
works well when the market’s demand and supply conditions are very stable, so the
average CTR does not change much, but as shown by some authors, e.g., Najafi-
Asadolahi and Fridgeirsdottir (2014), in general, this conversion rule could be
suboptimal and leads to a substantial revenue loss for the publishers because the
CTR value can change significantly and instantaneously over time depending on the
supply and demand rates and the number of ads served in each point in time.

5.4.3.1 Ad Pricing Models in Sponsored Search

As mentioned earlier, pricing of sponsored search and NGD display ads involves
using GSP auctions. A GSP auction is an alternative approach for dynamically
changing the ad prices in online advertising to match the viewers’ supply and
advertisers’ demand. The closest classic auction to GSP is the second-price (also
known as Vickrey) auction. Pricing of ads through GSP auctions differs from GD’s
ad pricing in that advertisers submit the maximum prices they are willing to pay
(bids) and then the publisher charges each advertiser based on the submitted bids
according to the auction’s mechanism. As we will explain, the prices of ads depend
on both the number of bids and each advertiser’s valuation for the keyword. Hence,
the more advertisers there are, or the higher their valuation for particular keywords
are, the higher is the generated CPC or CPM price by the auction when a viewer
queries those keywords. In this way, the CPC or CPM prices of ads effectively adapt
to the market condition.

In the simplest GSP auction, for a specific keyword, advertisers submit bids
stating their maximum willingness to pay for a click made by a viewer (i.e., user).
Recall that multiple ads may be displayed on a page. With multiple ads displayed
on a page, the ad appearing at the topmost positions is most valuable. When a
viewer searches for a keyword, results are displayed along with sponsored links
in descending order of bids. That is, the ad with the ith highest bid is displayed
at the ith top position on the page. If the viewer then clicks on an ad in position
i, that advertiser pays the (i + 1)st highest bid. One distinguishing feature of
GSP auctions is that, advertisers can affect the rate of the clicks they receive by
changing their bids at any time. Hence, due to this continuous nature of the bidding
process, the advertiser can predict the number of clicks it can generate during a
particular time by developing an appropriate price function (e.g., like the one used
by Zhang et al. 2012). GSP requires that advertisers submit only one bid for each
keyword although they might have different ads for different products. The one-bid
requirement makes sense if we assume that the value of each position on the page
is proportional to its CTR, while viewers who click on ads on different positions
must have similar purchase probability. In other words, even though in the GSP
environment different products could be shown, viewers are assumed to have the
same purchase probability for all the ads. Thus, the most important factor in the
GSP auction is a slot’s CTR. Zhang et al. (2012) study the CTR of the slots in a
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search engine and verify that the CTR is decreasing from top to the bottom of the
page. Furthermore, Brooks (2004) empirically shows that the purchase probability
of viewers is not affected much by the ad’s position on the page.

GSP assumes that different ads in the same position have the same CTR while
in reality, this may not be the case. Search engines treat this possibility differently.
For example, Yahoo! does not consider this possibility and ranks the ads solely in
descending order of bids (bid ranking). However, Google multiplies an advertiser’s
bid value by its “quality score” to determine an advertiser’s expected revenue. Then,
it ranks the ads based on their expected revenues (revenue ranking). In an easy
way, the expected revenue of the ad in position i is bid(i) × CT R(i) while it
pays bid(i + 1) × [CT R(i + 1)/CT R(i)]. Edelman et al. (2007) provide a more
detailed model for GSP as described below, and show that a GSP auction tends to
be more profitable for the publisher compared to a classic second-price auction such
as Vickrey–Clarke–Groves.

The GSP Model
Assume that for a given keyword, there are N ad positions on the search page and
K bidders (advertisers). The expected number of clicks per unit period for an ad
posted in position i is αi . Advertiser k gains value sk for each click made on its ad,
so advertiser k’s payoff from being in position i is αisk , minus the payment it makes.
Assume that the number of times that position i is clicked does not depend on the
ads in this and other position partitions, and that an advertiser’s value per click does
not depend on its ad’s position. We label the positions in descending order so for any
i and j with i < j , αi ≥ αj . When a viewer enters a given keyword, suppose that
advertiser k’s last bid before the search was bk . Had advertiser k placed no bid for
the keyword, then bk = 0. Let b(j) be the j th highest bid and g(j) be the advertiser
who submitted b(j). g(j)’s ad is posted on position j ∈ {1, . . . , min{N,K}}. Each
ad is posted at most in one position. If the viewer clicks on ad j , g(j) gets a payoff
sg(j) −b(j+1). Hence, g(j)’s expected payoff is αj (sg(j) −b(j+1)). The GSP setting
is similar to Vickrey–Clarke–Groves (VCG) auction. In a VCG auction g(i)’s ad
is posted in position i. However, its payment is the negative of the externality it
imposes on others. Thus, the payment of the last advertiser allocated a slot is zero
if N > K , and αNb(N+1), otherwise. For other positions 1 ≤ i < min{N,K},
g(i) pays p(i) = p(i + 1) + (αi − αi+1)b

(i+1). It is easy to see that, unlike
VCG, truth-telling is not a dominant strategy under GSP. For example, consider
three advertisers, with per-click values of $10, $4, and $2, and two positions. Let
the click rates of these positions be nearly the same, namely, let position 1 receive
200 clicks per hour, and position 2 gets 199. If all advertisers bid truthfully, then
advertiser 1’s payoff is equal to 200($10 − $4) = $1,200. If instead, it bids $3 per
click, it will get position 2, and its payoff will be 199($10 − $3) = $1592.

Edelman et al. (2007) examine if the bids in the GSP auction converge to stable
equilibrium values when all values are common knowledge. A possible simple
strategy for an advertiser to increase its payoff is to try to force out the advertiser
who occupies the position immediately above. Suppose advertiser k bids bk and
is assigned to position i, and advertiser k′ bids bk′ > bk and is assigned to
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position (i − 1). If k raises its bid slightly, its payoff does not change, but the payoff
of the player above it will decrease. Player k′ can retaliate, and the most it can do is
to slightly underbid advertiser k, effectively exchanging positions with k. If adver-
tiser k is better off after such retaliation, it will indeed want to force player k′ out, and
the vector of bids will change. If the vector converges to a fixed point, an advertiser
in position i should not want to exchange positions with the advertiser in position
(i − 1). Edelman et al. (2007) call such vectors of bids locally envy-free. Edelman
et al. (2007) show that the game can have multiple locally envy-free Nash equilibria
that all provide the publisher with payoffs no less than the one in VCG auction.

Sponsored Search with Budget Constraint
Kitts and Leblanc (2004) analyze decisions for a trading agent for CPC auctions.
The agent creates a look-ahead plan of its desired bids, which allows it to exhibit
decisions, including the ability to hold back money during expensive periods. In
reality, search advertisers can bid on several keywords. Zhou et al. (2008) model
the budget-constrained bidding optimization for sponsored search auctions when
advertisers are omniscient (i.e., they know the bids of all advertisers at each time
period) and bid only for a single keyword. If a bidder is omniscient, then the best
bidding strategy corresponds to solving a knapsack problem. To better illustrate
this idea, they consider a simple case where the publisher has only one slot. At
each time t , let bt be the maximum bid on the keyword among all the bidders. The
omniscient bidder knows all the bids {bt }Tt=1. To maximize its profit, the omniscient
bidder should bid higher than bt . Winning at time t costs the bidder wt = bt stα

and earns a profit vt = (V − bt )stα, where V is the ad’s per-click value and st is
the expected number of times the keyword is searched during time t , and α is the
CTR (the chance the advertiser’s ad is clicked). Thus, the omniscient bidder with
the maximum budget B would solve

max
xt∈{0,1}

T∑

t=1

vtxt , s.t.
T∑

t=1

wtxt ≤ B. (5.19)

Thus keyword bidding corresponds to designing an algorithm for the online
knapsack problem.

As explained previously, search engines often post an advertiser’s ad only in
one position. Thus, if an advertiser has submitted bids for two different keywords
that both match the same search query, this conflict must be resolved somehow.
For example, if an advertiser has placed bids on the keywords “shoes” and “high-
heel,” then if a viewer makes the query “high-heel shoes,” it will match on two
different keywords. The search engine specifies, in advance, a rule for the resolution
based on the query, the keyword, and the bid. The most natural rule is to select the
keyword with the highest bid. Feldman et al. (2007) model this problem using an
undirected bipartite graph G = (K ∪ Q,E) where K is a set of keywords and
Q is a set of queries. Each q ∈ Q has an associated landscape, as defined by the
cost cq(bq(b)) and the clicks αq(bq(b)). An edge (k, q) ∈ E means that keyword
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k matches query q. The advertiser can control their individual keyword bid vector
b ∈ R

|K|
+ specifying a bid bk for keyword k ∈ K . Then, given the vector b, the

search engine chooses the advertiser’s maximum bid, which is connected to query
q as b∗

q(b) = maxk:(k,q)∈E bk . By submitting the bid vector b, the total amount
of payment made by the advertiser and the expected number of clicks it receives
are C(b) = ∑

q∈Q cq(b∗
q(b)) and α(b) = ∑

q∈Q αq(b∗
q(b)), where αq(b∗

q(b)) is
the number of clicks the advertiser is expected to receive if it bids b∗

q for q and
cq(b∗

q(b)) is the associated cost paid. If the advertiser uses a randomized strategy,

then it provides the search engine with a distribution B over bid vectors b ∈ R
|K|
+ . In

this case, the total cost and the clicks are C(B) = Eb[C(b)] and α(B) = Eb[α(b)].
The advertiser’s budget optimization problem is defined as

max
b

α(b), s.t. C(b) ≤ B. (5.20)

The solution to this problem provides the search engine with a distribution B over
bid vectors b ∈ R

|K|
+ . In this case, the total cost and the clicks are C(B) = Eb[C(b)]

and α(B) = Eb[α(b)]. The budget optimization problem in its general form
is very hard to solve. In addition, it is not easy to justify strategies involving
arbitrary distributions over arbitrary bid vectors to advertisers. The reason is that
advertisers often like strategies that are easy to understand and evaluate. For this
reason, Feldman et al. (2007) propose a “uniform bidding strategy” in which
b = (b, b, . . . , b) for some b ≥ 0. In this case, the advertiser would merely bid
b until its budget runs out, and the ad serving system would remove it from all
subsequent auctions until the end of the day. Feldman et al. (2007) show that always
there exists a uniform single-bid strategy that is 1

2 -optimal.9

The other work that considers advertisers bidding on several keywords is Borgs
et al. (2007) that examines a setting similar to Feldman et al. (2007) in which m

advertisers with limited budgets bid for n keywords. Borgs et al. (2007) assume
that if advertiser i bids bij on keyword j then its day-long payment and net utility
(i.e., total value minus total payment) on that keyword are Pj (bij ) and Uj (bij ),
respectively. If advertiser i has a budget Bi , the optimization problem becomes

max
bij

∑

j

Uj (bij ), s.t.
∑

j

Pj (bij ) ≤ Bi, (5.21)

which is similar to (5.20). At the optimal solution b∗
ij , we have dUj/dPj =

λi |bij =b∗
ij
, where λi is the Lagrange multiplier (or the corresponding dual variable).

This derivative is referred to as the “marginal ROI” and is the change in the
advertiser’s net utility for one unit of change in its payments. The derivative
condition implies that, at the optimal level, advertiser i has the same marginal
ROI across all keywords. Since obtaining the marginal ROI is often a difficult

9 1
2 -Optimal means that the achieved revenue by the uniform single-bid strategy is half of the

revenue that the bidder could have gained by using the optimal bidding policy.
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task, in order to solve (5.21), Borgs et al. (2007) propose and study a heuristic
approach by determining bij values such that ROIj = Uj (bij )/Pi(bij ) become
approximately equal across all the keywords. As explained previously, Zhang et al.
(2012) extend the models presented by Borgs et al. (2007) and Feldman et al.
(2007), by considering the model given by (5.16) and optimize it jointly over the bid
prices and campaign budgets. Likewise, Abhishek and Hosanagar (2013) develop a
different extension of Borgs et al. (2007) in which the authors determine the optimal
bids for multiple keywords by an advertiser when each keyword can be searched for
a random number of times.

Ye et al. (2014) consider a retailer using sponsored search marketing together
with dynamic pricing. The retailer’s bid on a search keyword affects the retailer’s
rank among the search results. The higher the rank is, the higher will be the
customers’ traffic and their willingness to pay. They study whether a retailer should
reduce prices when it bids more to attract customers (to strengthen the bid’s effect
on demand) or increase prices (to take advantage of higher willingness to pay).
They find that the answer depends on the “pace” at which the retailer increases
its bid. In particular, as the end of the season approaches, the optimal bid exhibits
smooth increases followed by big jumps. The optimal price increases only when the
optimal bid increases sharply, including the instances when the bid jumps up. Such
big jumps arise, for example, when the customer traffic is an S-shaped function of
the retailer’s bid.

5.4.3.2 Ad Pricing Models in Display Advertising

Ad Pricing in GD Contracts
We begin by looking at the pricing of impressions or clicks in GD display contracts.
These contracts are commonly used between advertisers and online publishers
such as Yahoo! for display ads. Such online publishers face uncertain demand
from advertisers to display an agreed-upon number of impressions or clicks within
a certain period, and uncertain supply of viewers with uncertain click behavior.
The main challenge is to determine the price to charge a particular advertiser
when its ad is shown to or clicked by a particular viewer, given the supply and
demand uncertainties, and the penalty if the promised number of impressions are
not delivered by the end date specified in the contract.

The existing models in the published domain tend to be simplistic in many
ways. For example, they mostly consider only a single web publisher in isolation.
Hence, the demand is a function solely of the publisher’s price for showing the
ad to a particular viewer. These models also ignore the impact of competition,
the possibility of substitution (if advertisers find a particular viewer segment to
be overly expensive), and possible strategic behavior of advertisers and viewers
over time. Despite these simplifications, these models provide good approximations
which can be useful in practice. Even with such simplifying assumptions, the
analysis can still be complex due to uncertainties in demand and supply, and
constraints on advertisers’ budgets.



134 N. Agrawal et al.

Deterministic GD Models

Mangani (2003) and Fjell (2009) examine the choice of CPM and CPC pricing
schemes when the price is set by the market (the publisher is only a price taker).10

Mangani (2003) considers a web publisher with a single page who is a price taker.
Let c1 and c2 be the market’s CPM and CPC prices, respectively. Let A be the
number of ads on the page. In addition, let N(A) be the number of viewers visiting
the page with ∂N/∂A < 0. This assumption was later adopted by many other papers
in this stream of literature. Let c(A) be the number of clicks made on one of the ads
in a unit time with ∂C/∂A < 0. Let α be the proportion of ads with the CPM pricing
scheme and (1 −α) be the proportion of ads with the CPC. The publisher is seeking
to find the optimal shares of the two contracts by solving the following optimization
problem:

max
α,A

R(α,A) = [αN(A)c1 + (1 − α)c(A)c2]A. (5.22)

Fjell (2009) extends the model in Mangani (2003) by letting the CPM and CPC ad
shares depend on c1 and c2 explicitly. Specifically, Fjell (2009)’s model assumes
that A = A1(c1) + A2(c2), while (unlike Mangani (2003)) c1 and c2 are decision
variables. So, this optimization problem becomes maxc1,c2 R(α,A) with R(α,A) =
c1A1(c1) + A2(c2)wc2, in which, w = c(A)/N(A) is the CTR.

Asdemir et al. (2012) develop a principal–agent model to capture the decision
regarding the choice of CPM or CPC, but from an advertiser’s perspective instead
of the publisher. The principal (advertiser) hires an agent (publisher) to deliver its
ad on its website. The principal is uncertain about which of the publisher’s pages
are visited by the targeted viewer. The advertiser can induce the publisher to obtain
information about pages visited by the targeted viewers by choosing a CPC contract.
For the advertiser, a CPC contract requires assigning campaign decisions to the
publisher. Therefore, the advertiser has two options to choose from: it can select
the CPM model and control the campaign decisions by choosing which pages and
how much (i.e., how many impressions, or how long) to advertise, or select the CPC
model in which the publisher makes the decisions but also has better information
about viewers.

Among the pricing models that consider GD contracts is the work by Bharadwaj
et al. (2010) who propose a special pricing model, in which the price of a guaranteed
contract is obtained based on the prices of the different viewer types that the
campaign targets. The price of each viewer type is, in turn, based on the historical
sales prices that were negotiated between salespeople and advertisers. An interesting
approach that the authors use to find the GD’s contract price is the Weighted Average
Pricing (WAP) approach in which the price of each impression must be as close

10These works could have been classified as a separate subsection focused on the publisher’s
“objective selection” decision (see Fig. 5.6). Nevertheless, for brevity, we merely consider them
as parts of the publisher’s pricing decisions.
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as possible to the negotiated price of the past eligible historical contracts made for
different ad campaigns (normalized per impression). Specifically, the price of viewer
type i, pi , is obtained as

pi ∈ arg min
p≥0

{∑

j∈Hi

xij (qj − p)2
}
, (5.23)

where Hi is a set of eligible historical contracts that contain viewer type i, and
qj is the negotiated per-impression price of contract j . xij ≥ 0 is the weight
that captures the importance of contract j in determining the price i. By solving
the above problem for pi , one can find that pi = ∑

j∈Hi
xij qj /

∑
j∈Hi

xij . For
example, suppose there is a viewer’s arrival corresponding to a Computer Scientist
living in Palo Alto viewing a Sports page. If there are two historical contracts
interested in the viewer’s arrival at the page, but 60% of such viewer arrivals were
given to the first contract (priced at $1 CPM) while 40% of such viewer arrivals
were given to the second contract (priced at $4 CPM), then WAP would price the
viewer’s arrival as the weighted average price of the contracts. So, the price would
be 0.60(1) + 0.40(4) = $2.2 CPM.

Some authors have studied the problem of a web publisher who generates
revenues not only from advertising, but also from subscriptions. Baye and Morgan
(2000) present a simple model that explains why the mass media (e.g., TV,
newspapers, magazines, and online publishers) gain most of their revenues from
advertisements rather than subscriptions. Prasad et al. (2003) examine the sub-
scription price and the amount of advertising that must be offered to consumers
with several options. They show that pure revenue models such as ad-based or
subscription-based only may not be optimal, so web publishers should consider
hybrid models. In response to increasing interest in hybrid models, Kumar and Sethi
(2009) study the dynamic pricing of web content on a site when revenue is generated
from both a subscription fee and display ads. They use optimal control theory to
solve the problem and obtain the optimal subscription fee and ad level.

Stochastic GD Models

Najafi-Asadolahi and Fridgeirsdottir (2014) consider a GD model, based on CPC
pricing scheme, in which a publisher is faced with uncertain demand for advertising
slots (sent through an ad network) and uncertain arrival of viewers to its website
with uncertain click behavior. For simplicity, let the web publisher’s website have a
single page with n similar slots for ads. The publisher deals with one ad campaign
and one viewer type. Advertisers arrive (sent by an ad network) according to a
Poisson process with rate λ. Each advertiser requests its ad to be posted on the
page until clicked by x viewers. Likewise, viewers arrive at the publisher’s page
according to a Poisson process with rate μ. Each viewer clicks on an ad on the
page with probability β or leaves without clicking on any ad with probability 1 −β.
Let μ̂ := βμ be the effective rate with which viewers click on one of the ads on
the publisher’s page. The publisher’s goal is to maximize its total revenue rate by
determining the appropriate prices to charge per click. The revenue rate consists of
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the payments made by advertisers multiplied by the “actual” demand rate. Each
payment consists of the price per click, p, multiplied by the number of clicks
requested, x. The authors capture the price-sensitivity of the advertisers with the
inverse-demand (price) function, p(λ, x, n), which is assumed to be continuous and
(weakly) decreasing in the advertisers’ arrival rate, the number of clicks, and the
number of slots. As there is a one-to-one relationship between p(λ, x, n) and λ, one
can optimize the revenue rate with respect to λ and then determine p(λ, x, n). The
optimization problem of the publisher is

max
λ∈[0,+∞)

R(λ), with R(λ) = λ(1 − Pn(λ; x, n, β, μ̂))p(λ, x, n)x, (5.24)

where μ̂ = βμ is the viewers’ effective arrival rate and Pn is the steady-
state probability that all the slots are occupied. Hence, λ(1 − Pn(λ; x, n, β, μ̂))

is the advertisers’ “actual” arrival rate into the system. The authors show that
the steady-state probability that i slots are occupied is Pi = (rx)i/

∑n
j=0(rx)j ,

(i = 0, 1, 2, . . . , n). Araman and Fridgeirsdottir (2011) consider a similar setting
but focus on direct GD contracts in which advertisers can wait for a particular
publisher’s page to become available. They study the optimal CPM pricing when
the publisher allocates the arriving impressions uniformly (evenly) among the ads.
Although ads are displayed uniformly, they can suffer delays due to demand and
supply uncertainties. In addition to the optimal CPM price, they determine the
optimal display frequency for this uniform allocation policy by using a large-
capacity system analysis. Fridgeirsdottir and Najafi-Asadolahi (2017) consider a
similar display advertising setting in which a web publisher posts display ads on
its website and charges based on the CPM pricing scheme while promising to
deliver a certain number of impressions on the ads posted. The publisher is faced
with uncertain demand for advertising slots and uncertain supply of visits from
viewers. Advertisers specify various attributes of viewers, and request their ads to
be displayed only to those viewer types (targeting). They formulate the problem
as a queuing system and show that the optimal CPM price can increase in the
number of impressions made of each ad, which is in contrast to the quantity-discount
commonly offered in practice.

Ad Pricing in NGD Contracts NGD contracts have become popular, largely due
to the emergence and success of advertising exchanges. As explained previously,
an ad exchange provides a platform for publishers (or ad networks) to conduct
auctions to sell a wide range of impressions one at a time to advertisers or
their ad agencies (Muthukrishnan 2009). As the delivery of each impression to
advertisers is immediate, these markets are also referred to as “spot markets.” An
immense variety of impressions (related to different viewer types) are sold in an ad
exchange. Most significantly, an ad exchange facilitates the trades of impressions
among geographically dispersed advertisers and publishers and allows for real-time
bidding (RTB) by advertisers or their ad agencies. NGD display contracts have two
major differences with sponsored search. First, unlike sponsored search in which
advertisers place their bids for predefined keywords beforehand, in RTB advertisers
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are allowed to use automated algorithms (programmatic buying) to bid for an
impression quite shortly after its arrival (e.g., in about 140 ms as shown in Fig. 5.5)
(Yuan et al. 2013; Zhang et al. 2014). The bid can differ from one impression to the
next based on how much the impressions’ attributes are targeted by the advertisers.

To determine the optimal bidding strategy, an advertiser determines the expected
utility from displaying the ad and the payment made for it. The expected utility
from displaying the ad consists of the winning probability multiplied by the CTR
(probability that the ad is clicked) times the expected value of the click (i.e., the
purchase probability (conversion rate) times the price of the product or service).
Second, unlike the sponsored search in which CPC is generally used, in RTB, the
typical pricing scheme is CPM.

Several works have considered RTB for advertisers and the majority consider the
budget or spending constraint. Ghosh et al. (2009b) consider a bidding agent that
must win d impressions and has a total budget T . Suppose that the bidding agent
knows the total supply n of impressions satisfying the targeting requirements. Let
f = d/n be the fraction of the supply that the agent must win, and t = T/d be
target spend-per-impression won. Suppose that the highest bids from other bidders
are drawn i.i.d. from a distribution with CDF P for each impression sold through
the auction. If the distribution P is known to the advertiser, then the bid that wins the
fraction f of the supply is z∗ = P−1(f ). Define p∗ such that EP [X|X ≤ p∗] = t .
That is, p∗ is the bid price that reaches the target spending in expectation. If z∗ ≤ p∗,
then bidding p∗ with probability A = f/P(p∗) independently on each impression
achieves both the targets on buying of f and the spending of t in expectation
(because P(p∗)n · f/P(p∗) = d, and EP [X|X ≤ p∗] = t). In practice, an
advertiser does not know P . So, it needs to learn it to meet the target quantity
and spend constraints. However, learning incurs a penalty, leading to an explore-
exploit trade-off. The nature of the penalty depends on the assumptions made about
the extent of information available to the bidding agent. If the advertiser can fully
observe the winning bid, then it can explore the first m opportunities by not bidding
and learning the empirical distribution of P and then use it as an approximation.
If the information is not fully observable, the authors assume that the advertiser yet
can observe the maximum bid by paying a cost. In that case, the authors suggest a
learning algorithm called Guess-Double-Panic in which the advertiser should start
with a safe bid and increase it exponentially exploring enough with each new bid to
learn the distribution below this bid.

Chen et al. (2011) propose an RTB algorithm that enables targeting viewers with
real-time conversion data, and adjusts bids according to budget consumption levels.
They show that under a linear programming primal-dual formulation, the simple
real-time bidding algorithm is an online solver to the original primal problem by
taking the optimal solution of the dual problem as input.

Balseiro et al. (2015) consider advertisers with budget constraints who participate
in repeated auctions and need bidding strategies to optimize the allocation of their
budgets to incoming impressions. Specifically, they consider a continuous-time
infinite horizon setting in which viewers arrive at the publisher’s page according
to a Poisson process with rate η. Upon the arrival of a viewer, the publisher may
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send the viewer to an ad exchange, where an auction is run to choose the winning
advertiser. Advertisers arrive at the exchange according to a Poisson process with
rate λ. Advertiser k is characterized by a type θk = (bk, sk, αk, γk) in which bk is
advertiser k’s budget; sk is its campaign length; αk is the probability that advertiser k

matches a viewer (independently and at random). Conditional on a match, advertiser
k has a private (and independent) value for a viewer, characterized by Fv(·; γk),
parameterized by γk over the support [V , V ]. The advertisers’ utility is the sum of
the values from the impressions won minus the payments made during the campaign
length. The publisher obtains the revenue c > 0 for each impression not won by any
advertiser in the exchange (opportunity cost). The publisher’s payoff is the long-
run average profit rate generated by the auctions, where the profit is the difference
between the payment from the auction and c when the impression is won by an
advertiser. The publisher’s objective is to maximize its payoff by adjusting the
reserve price r to set for the auctions.

Similar to Ghosh et al. (2009a) and Iyer et al. (2014), the authors assume
that—because many advertisers are in the ad exchange market—the distribution of
competitors’ bids is fully stationary. In addition, the authors assume that the budget
constraint must be satisfied in expectation. The authors call these conditions as fluid
mean-field (FMF). To win an auction, an advertiser competes against other bidders
as well as the reserve price r . Let D be the steady-state competitors’ highest bid,
which is independent and identically distributed (i.i.d.) across auctions. Then, the
problem, for a bidder of type θ = (b, s, α, γ ) optimization problem is

max
w(·)

αηsE[1{D≤w(V )}(V − D)], (5.25)

s.t. ηsE[1{D≤w(V )}(V − D)] ≤ b. (5.26)

5.4.4 Other Operational Challenges for Advertisers and
Publishers

In addition to the challenges described thus far, the publisher faces several others,
which we have chosen to not review in detail given our scope outlined at the
beginning of this paper. However, we briefly outline some of these challenges here.

Ad Design An essential element in any ad is the effectiveness of its content. Thus,
the creative element of ad design, including ad formats (e.g., banners, floating ads,
rectangles, skyscrapers, and pop-ups), remains an important design decision for
advertisers and ad agencies. Studies such as Burns and Lutz (2006) have examined
consumer attitudes towards different online ad formats.

Objective Selection We have noted before that, advertisers have a variety of
objectives that drive their advertising decisions, some related to long-term and
others related to short-term goals. Examples of metrics used typically (many
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of which were deployed in the papers described earlier) include the number of
impressions (Danaher et al. 2010), clicks (Chatterjee et al. 2003), viewer visits
(Dalessandro et al. 2015), and purchases (Manchanda et al. 2006). While the chosen
objective will drive outcomes and decisions, it is not always clear which is the best
objective to use.

User Query Match The publisher must match relevant ads to the query specified
by viewers. A viewer’s query could be an exact match with the keyword that an
advertiser pays for. However, more often, the query language and the keywords
do not match exactly. The query language might have a partial match with the
keywords that advertisers pay for. For example, for a search query “How much
is the Omega watch?” the relevant ads might be those who have placed bids for
the terms “Omega,” “watch,” “how much,” “local watch seller,” etc. In such a
case, choosing the most relevant ads is quite challenging. Also, the query might
not have any direct overlap, but the content might be relevant to the ad campaign.
For example, if a viewer misspells “flowers” as “flwers,” the search engine might
still match ads that have placed bids for “flowers.” As another example, for the
query “how much tesla,” relevant ads may have placed bids for the keyword “price”
rather than “how much” (Yin et al. 2016). Search engines conduct an advanced
match using query fragment rewriting. Query fragment rewriting generates a list of
paraphrases for a search query (for example, if a viewer types “ping pong rackets,”
the search engine also considers searching for the alternate wordings generated by
its query rewriting algorithm, such as “ping pong paddles,” “table tennis rackets,”
“table tennis racquets,” “table tennis paddles,” etc.). Search engines have developed
scoring functions to determine relevant ads based on similarity search algorithms
that are extensively studied as parts of the information retrieval theory.

Ad Sorting Publishers and search engines must determine which ad to display in
which location on a page. This is important as there are multiple locations on a
page to display ads, and different locations have different attractiveness for viewers.
Higher ranked ads are placed in more attractive locations, and may generate more
revenues for the publisher. When a search engine determines the ads with similar
relevance levels to the search query, it orders them based on some ordering rule. As
noted earlier, the ranking of ads is based either on their bid prices (bid ranking) or
on their expected revenues (revenue ranking) (Edelman et al. 2007, Karande et al.
2013).

Information Asymmetry There is a fundamental incentive incompatibility
between the publishers and the advertisers because of their differences in availability
of information. Publishers have a greater level of detailed information about
their viewers. They can share this information with advertisers allowing them
to make better decisions about targeting decisions or about bidding decisions in
RTB contracts. However, withholding this information can allow publishers to
price-discriminate and deal with the uncertainty of viewer arrivals by bundling
impressions. Hummel and McAfee (2016) analyze when improved targeting
increases revenues, and show that improved targeting increases revenues when
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there is a sufficiently large number of bidders, but targeting can hurt revenues when
there are just a few bidders. Fu et al. (2012) show that for second price auctions
with reserve prices, increased information can decrease expected revenue. Choi
et al. (2017) provide other references related to this question.

Attribution The goal of any advertising, display or search based, is to ensure that
the viewer undertakes the desired action (view, click, purchase, etc.). However, in
general, the final action, whenever it happens, may be the result of one of the several
interactions that the viewer may have had with the advertiser. It is important to
the advertiser as well as the publisher to understand which ad event contributed
to this final action and in which way. This challenge of assigning the appropriate
level of credit to the appropriate ad event is referred to as “attribution.” This is
important because it can influence decisions and resources allocated to various ad
events (Geyik et al. 2014). Various heuristic (e.g., Kee 2012) as well as analytical
model-based (e.g., Anderl et al. 2014) attribution approaches have been used in the
literature.

Invalid Traffic and Fraud Issues Correctly identifying users for targeting and
retargeting purposes, identifying them across various Internet domains and across
platforms continues to be a significant technical challenge for all participants in
the digital supply chain. Another important technical challenge that is a serious
concern to industry as well as academics is ad fraud, defined by Google as “invalid
traffic including both impressions, clicks, and conversions which are not to be the
result of the genuine user interests.” According to published reports by Interactive
Advertising Bureau, ad fraud costs the media industry billions of dollars in lost
revenues. Such fraud can be in the form of fake bids generated that advertisers bid
on, fake clicks on ads, and fake actions on ads. Such fraudulent activities arise from
pay-per-view networks, botnets, competitors, hired spammers, as well as keyword
stuffing, impression stuffing and coercive actions by unethical publishers. Therefore,
fraud detection and prevention are significant challenges for all participants in the
digital advertising industry.

Incentive Alignment A recently emerging topic in digital advertising is “incentive
alignment” between the advertisers and the ad agencies that represent them. When
bidding on behalf of their clients (i.e., advertisers), the ad agencies aim to maximize
their internal revenues, in addition to meeting each campaign’s promised goal.
Allouah and Besbes (2017) propose a framework to analyze the implications of
such a campaign coordination role by ad agencies, taking as a benchmark the case
in which each ad agency would manage the bidding process of each advertiser that
it represents independently of other clients, a case that the authors refer to as multi-
bidding. The authors show that the adoption of multi-bidding by all ad agencies
would lead to an increase in both the social welfare and the publisher’s revenues.

Incorporating Learning Another topic considered recently is the learning of the
distribution of the value of clicks or impressions, or the bidding distribution during
the bidding process. Ghosh et al. (2009b) study learning about the distribution of
the winning bid. Amin et al. (2013) consider the problem of learning an advertiser’s
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per-click value distribution when it is repeatedly interacting with a publisher through
a posted-price mechanism. Jiang et al. (2014), Iyer et al. (2014), and Cai et al. (2017)
are other examples that incorporate learning in different ways.

5.5 Conclusion

The digital advertising industry has witnessed exponential growth since its incep-
tion. Currently, a $200 billion industry, it serves a critical role in enabling the
matching processes between viewers and advertisers to meet the advertisers’ objec-
tives effectively. The digital advertising supply chain allows publishers to match the
supply of viewers with the demand they receive from advertisers. In addition, its
Internet-based infrastructure provides a basis for designing optimization tools for
solving the unique operational challenges faced by publishers and advertisers.

In this chapter, we summarized some of the more important challenges faced by
advertisers and publishers, and surveyed a broad range of representative papers on
digital advertising to highlight the major contributions to the state-of-art research in
this field. Given the trends in the digital advertising industry, we believe that there is
a growing need for further research in this area, to help to develop new operational
decision-making models.

In particular, we believe that the current research on digital advertising can be
extended in at least three directions. First, given that multiple entities are involved
in the digital advertising supply chain, each can have different and often conflicting
objectives. Modeling how the incentive misalignment between the different parties
can affect the operational decisions has received minimal attention in the literature,
and is a very interesting direction. Second, most of the works we presented in
this chapter consider only a monopolistic web publisher. Exploring competition
between two or more publishers offering the same or different pricing schemes
and having symmetric or asymmetric information structures is another interesting
research direction. Finally, almost all papers studying inventory allocation have
analyzed the publisher’s problem by assuming the uniform delivery of impressions
to advertisers across time. Although this uniform allocation policy is prevalent in
practice due to its simplicity and ease of use, it might not be optimal. For example,
the uniform allocation policy could be directly tied with the advertisers’ smooth
budget pacing policy discussed earlier. When viewers arrive at the publisher’s page
at time varying rates, it makes sense for publishers to change the pace of the delivery
of the impressions to advertisers dynamically. Optimizing the rate at which the
impressions are delivered to advertisers at each point in time is another interesting
direction.
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Chapter 6
New Models of Strategic Customers in
the Age of Omnichannel Retailing

Fei Gao and Xuanming Su

Abstract In the omnichannel era, consumers optimize their shopping experience
by exhaustively considering all possible alternatives across both online and offline
channels. In this chapter, we present new approaches to model consumer behavior in
the omnichannel environment. We start by reviewing traditional models of strategic
consumer behavior and then apply them to omnichannel initiatives in the retail
industry. These omnichannel strategies help mitigate two key problems in retail:
stockouts and product misfit. We hope that our models can inspire future research
in the emerging area of omnichannel retailing.

6.1 Introduction

With access to a range of new technologies and a wide variety of online resources,
connected consumers are becoming increasingly sophisticated. These consumers
optimize their shopping experience by exhaustively considering all possible alterna-
tives across both online and offline channels; we refer to such shoppers as strategic
customers. Omnichannel retailing acknowledges this type of consumer behavior by
integrating the best of both digital and physical worlds at each step of the customer
experience (Rigby 2011).

Different channels provide customers with different shopping experiences.
Offline channel allows customers to physically try on the product and therefore
reduces the customer’s uncertainty over the value of the product. However, shopping
in a physical store may involve the risk of encountering stockouts after incurring
the hassle of traveling there. In contrast, online channel provides customers with
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an environment to easily find product in-stock status on a website. The downside
of shopping online, however, is that customers may not be able to fully evaluate
the product in the digital world without the physical touch-and-feel experience, and
therefore may end up buying and returning an unwanted product.

Two of the key considerations for retailers are stockouts and product misfit.
In this chapter, we present models to study these two issues in retail operations.
We first review traditional models of strategic consumer behavior in the presence
of stockouts or product misfit; these models mainly focus on a single-channel
environment. We then extend them to an omnichannel setting where the retailer
operates both online and offline channels in an integrated way while strategic
consumers face uncertainty over both inventory availability and product fit.

6.2 Consumer Response to Stockouts

Su and Zhang (2009) builds a newsvendor model where the store makes pricing and
inventory decisions and customers strategically decide whether or not to incur the
hassle to visit the store given the stockout risk. We present their basic model in this
section.

The retailer makes decision about price p and stock level q at unit cost c. Market
demand D is random with distribution F . Each individual consumer has valuation
v for the product and faces a search cost of h (e.g., transportation cost, shopping
time, etc.) in order to visit the retailer. If the product is out of stock, this sunk
cost is not recoverable. Price p is observable to customers; but stock level q is not.
Before visiting the retailer, consumers have belief about the in-stock probability ξ̂ .
Throughout this chapter, we use the hat notation ·̂ to denote beliefs. Under this belief
ξ̂ , the consumer expects to earn surplus (v − p)ξ̂ − h from visiting the retailer (and
zero otherwise). Therefore, given belief ξ̂ , consumer’s behavior follows a threshold
rule: They visit the retailer if and only if p ≤ r , where the reservation price r is
given by (v − r)ξ̂ − h = 0.

To maximize expected profit, the retailer should set the price equal to the
consumer’s reservation price, because this is the highest price at which consumers
are willing to visit the retailer. However, the retailer does not know consumer’s
reservation prices; instead, he only has a belief r̂ about it. Given this belief, the
retailer chooses price p = r̂ and stocks the critical fractile quantity q = F̄−1(c/p)

to maximize the newsvendor profit function π(q) = pE min(D, q)− cq, where the
operator E means expectation.

To study the strategic interaction between the retailer and the consumers, the
rational expectations (RE) equilibrium concept is commonly used in the literature on
retail operations. One important feature of a RE equilibrium is that beliefs must be
consistent with actual outcomes. In other words, the retailer’s belief r̂ , must coincide
with consumers’ reservation price r , and consumers’ belief over availability proba-
bility ξ̂ must agree with the actual in-stock probability corresponding to the retailer’s
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chosen quantity q. In fact, this probability is given by A(q) = E min(D, q)/ED

(Deneckere and Peck 1995; Dana 2001).

Definition 6.1 An RE equilibrium consists of the quantities p, q, r , ξ̂ , r̂ satisfy-
ing

(i) r = v − h/ξ̂ ;
(ii) F̄ (q) = c/p, p = r̂;

(iii) ξ̂ = A(q), r̂ = r .

The first two conditions (i) and (ii) follow, respectively, from the consumer’s optimal
decision r given belief ξ̂ , and the retailer’s optimal decisions p, q given belief r̂ .
Condition (iii) requires that both the retailer and consumers’ beliefs are correct in
equilibrium.

Proposition 6.1 There exists some h̄ < v − c such that an RE equilibrium exists if
and only if h < h̄. In any RE equilibrium, the retailer’s price p∗ and quantity q∗
satisfy (i) F̄ (q∗) = c/p∗ and (ii) (v − p∗)A(q∗) = h.

This proposition is shown by solving the equilibrium conditions of Definition
6.1. To avoid trivial outcomes and guarantees the existence of an RE equilibrium,
the following assumption is imposed.

Assumption 6.1 Consumer search cost h satisfies h < h̄.

Su and Zhang (2009) further studies the case where the retailer could credibly
announce the stock level q in the beginning. With this credible quantity commit-
ment, in any equilibrium, consumer’s belief ξ̂ must be consistent with the actual
availability probability A(q), which is determined by the seller’s committed quantity
q. Thus, they are willing to visit the retailer as long as price does not exceed the
reservation price r = v − h/A(q). Corresponding to quantity q, it is optimal for the
retailer to charge price p(q) = v − h/A(q). Then, the optimal order quantity q can
be derived by maximizing the following profit function π = p(q)E min(D, q) −
cq = (v − h/A(q))E min(D, q) − cq = vE min(D, q) − hED − cq, and thus by
setting q satisfying F̄ (q) = c/v.

Let us use superscript ·c to denote the case with quantity commitment. The
following proposition characterizes market outcomes in this case and is proven
similarly as Proposition 6.1.

Proposition 6.2 Suppose that the retailer can commit to quantity q. In equilibrium,
the seller’s price pc and quantity qc satisfy (i) F̄ (qc) = c/v and (ii) (v −
pc)A(qc) = h.

Besides committing to the initial quantity level q, the retailer may also share
real-time inventory information with customers. There is a key difference between
quantity commitment and the real-time inventory information. Quantity commit-
ment merely informs consumers about the retailer’s initial inventory level, and thus
consumers may still encounter stockouts when they visit the store. Consider the
following numerical example. Suppose the retailer stocks an inventory of 50 units
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but the random demand realization is 80 customers (each wanting one unit). When
these customers show up at the store, 30 of them will face stockouts. In contrast,
with real-time inventory information, consumers no longer face any availability
uncertainty. The first 50 customers will learn that the product is in stock (and thus
successfully purchase it) while the remaining 30 will learn that the product is out of
stock and thus not go to the store at all. A basic premise behind real-time inventory
information is that there is a sequential nature to customer arrivals, so different
customers might receive different information as the inventory status evolves in real-
time.

Following Gao and Su (2017b), we extend the model in Su and Zhang (2009)
to study the case where real-time information is available to customers. Since
customers are able to know the inventory availability status in store beforehand,
there is no in-store stockout risk for them. As a result, consumer are willing to visit
the retailer as long as there is still inventory available and the price does not exceed
the reservation price r = v − h. Therefore, it is optimal for the firm to charge
p = v − h. Then, the optimal order quantity q can be derived by maximizing the
following newsvendor profit function π = (v − h)E min(D, q) − cq.

Let us use superscript ·i to denote the case with real-time inventory information.
The following proposition characterizes market outcomes in this case:

Proposition 6.3 Suppose that the retailer shares real-time inventory information
with customers. The seller’s optimal price pi and quantity qi satisfy (i) F̄ (qi) =
c/pi and (ii) pi = v − h.

So far, we have explored three different models. In the first model, consumers
anticipate and respond to potential stockouts; we call this the model with strategic
customer behavior (SCB). In the second, the retailer additionally commits to an
initial stocking quantity; we call this the quantity commitment (QC) model. In the
third model, the retailer provides real-time information (RTI) about inventory status.
The equilibrium results of these models are summarized in Table 6.1.

Consumer anticipation of and response to potential stockouts makes it hard for
the retailer to attract demand and thus hurts operational performance. Comparing to
SCB, Table 6.1 suggests that QC and RTI alleviate the stockouts problem through
different mechanisms: QC helps support a high retail service level (as the stockout
probability is increased from c/v to c/p), while RTI increases customer willingness-
to-pay (from p = v − h/A(q) to p = v − h) by eliminating the risk of stockouts.

The following proposition compares the retailer optimal profit in the three
scenarios above: base case (π∗), with quantity commitment (πc), and with real-time
inventory information (πi).

Table 6.1 Comparison of
equilibrium results

SCB F̄ (q) = c/p, p = v − h/A(q)

QC F̄ (q) = c/v, p = v − h/A(q)

RTI F̄ (q) = c/p, p = v − h



6 New Models of Strategic Customers 151

Proposition 6.4 π∗ < πc < πi .

Proposition 6.4 shows that sharing inventory information (either through QC or
through RTI) with customers is valuable to the retailer. Each approach allows the
retailer to recover some of the profit loss due to consumer anticipation of potential
stockouts. However, they operate in different ways. Under quantity commitment,
consumers are better able to assess their chances of securing the product if they do
visit the retailer (at a cost of h). All else equal, this encourages consumer visits and
increases their willingness-to-pay. This effect in turn increases the retailer’s profit.
With real-time inventory information, consumer stockout risk is fully eliminated,
and thus the retailer is able to capture the entire consumer surplus v − h, which
further improves the profit. Comparing RTI and QC, the above proposition shows
that the former performs better. This is a new result that has not been found in Su
and Zhang (2009) and Gao and Su (2017b), and it demonstrates the importance
of leveraging current technologies to provide real-time inventory information to
consumers.

6.3 Consumer Response to Product Misfit

When making a purchase decision, consumers may also face uncertainty over the
value of the product, especially in the online channel due to the lack of physical
touch-and-feel experience. Davis et al. (1995) build a model that incorporates
consumer valuation uncertainty risk and studies the impact of a specific return
policy, i.e., money back guarantee. Below we present a simplified version of the
model in Davis et al. (1995).

Consider a retailer who sells a product that can be fully evaluated only after
purchase. Consumers are homogeneous ex ante. After the purchase, a fraction θ of
customers like the product and obtain a high value v (we refer to them as the “high-
type” customers); and the rest 1 − θ do not like the product and obtain 0 value (we
refer to them as the “low-type” customers). Thus, consumers realize their types only
after purchase. The total market size D is deterministic and normalized to 1. Denote
the unit production cost as c < v. The firm chooses price p to maximize total profit.

If customers cannot return the product after purchase, then their expected utility
from buying the product is u = θv + (1 − θ)0 − p. The retailer should set the price
p∗ = θv since this is the highest price at which consumers are willing to make a
purchase. Then, the optimal profit is simply given by π∗ = (p∗ − c)D = θv − c.

If the retailer offers money back guarantee, then consumers can return the
product with full refund. Let hr denote the consumer’s hassle cost of returning a
product, and let s denote the retailer’s salvage value of a returned product. The
consumer’s decision tree involves two sequential decisions: (i) buy or not, and then,
if the consumer buys, (ii) keep or return (after observing his valuation). Clearly,
at stage (ii), a low-type consumer (with valuation 0) will return the product if and
only if hr ≤ p. Thus, each consumer’s ex ante expected utility from purchasing the
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product is u = θ(v−p)+(1−θ) max(0−p,−hr). Suppose that low-type customers
will return the product instead of keeping it, in accordance to the intent of the money
back guarantee. Then, each consumer’s expected utility is θ(v − p) − (1 − θ)hr .
The retailer should set the price pm = v − ((1 − θ)/θ)hr since this is the highest
price at which consumers are willing to make a purchase. Then, the optimal profit
is simply given by πm = pmθD + s(1 − θ)D − cD = θv + (1 − θ)(s − hr) − c.
Comparing πm and π∗, we find that money back guarantee is more profitable (i.e.,
πm > π∗) if and only if the consumer’s hassle cost from returning merchandise is
smaller than the retailer’s salvage advantage (i.e., hr < s). Further, for this to be
an equilibrium outcome, low-type consumers must be willing to return the product
(as assumed above), i.e., hr < pm = v − ((1 − θ)/θ)hr , which yields hr < θv. In
summary, money back guarantees are effective if the return hassle cost hr is smaller
than both the consumer’s expected valuation θv and the retailer’s salvage value s.

Su (2009) further extends the model above by incorporating aggregate demand
uncertainty and the possibility of partial refund. Specifically, the market demand D

is random with distribution F . Besides the pricing decision p, the retailer also needs
to decide the stock quantity q and the refund r to be paid, if consumers choose
to return the product (where r ≤ p). The money back guarantee considered in
Davis et al. (1995) is a special case with r = p. For simplicity, suppose hr = 0,
and thus low-type customers will always return the product and obtain refund r .
Therefore, consumer’s ex ante expected utility from purchasing the product is u =
θv + (1 − θ)r −p. Note only high-type customers will keep the product. Therefore,
the retailer’s profit function can be expressed as follows:

π (p, q, r) = pθE min (D, q)︸ ︷︷ ︸
sold

+ (p − r + s) (1 − θ) E min (D, q)︸ ︷︷ ︸
returned

+ s (q − E min (D, q))︸ ︷︷ ︸
not sold

−cq

= [(p − s) θ + (p − r) (1 − θ)] E min (D, q) − (c − s) q,

where s < c is the salvage value of the returned and unsold products.

Proposition 6.5 The retailer’s optimal price p∗, quantity q∗, and refund r∗ are
given by p∗ = θv + (1 − θ)s, F̄ (q∗) = (c − s)/[θ(v − s)] and r∗ = s.1

Proposition 6.5 implies that the optimal policy involves partial refunds (i.e.,
r∗ < p∗). Specifically, the optimal partial refund equals the salvage value (i.e.,
r∗ = s) as this leads to allocative efficiency: all consumers who value the product
at less than the salvage value will return the product. In other words, money back

1If consumer valuation takes only two possible values as we assume in this section, then there are
actually multiple equilibria (p∗, q∗, r∗) such that p∗ = θv+(1−θ)r∗, F̄ (q∗) = (c − s)/[θ(v − s)]
and r∗ ≥ 0. However, as shown in Su (2009), the equilibrium specified in Proposition 6.5 is the
only robust one for a general consumer valuation distribution.
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guarantees (or full refunds) offer “too much protection” to consumers, transferring
the potential downside of excess inventory and product misfit entirely to the retailer.

Both Davis et al. (1995) and Su (2009) focus on refund policies to mitigate
consumer valuation uncertainty risk by reducing their mismatch cost after purchase.
Another approach that online retailers can take is to provide customers with
more product information and therefore reduce the incidence of mismatch before
purchase. With the development of virtual reality technology, some retailers are able
to implement virtual showrooms on their website, so that online shoppers can now
try on different products as if they were in the store (Financial Times 2011). For
example, on the website of BonLook, an eyewear retailer, consumers can upload
their own photos to see how different frames will look on their digital faces. Many
advanced technologies are now available from an increasing variety of providers. As
another example, Metail provides visualization technology that creates 3D models
of shoppers based on a few customized measurements, while Shoefitr uses 3D
scanning technology to measure the insides of shoes with accuracy up to a quarter
of a millimeter (CNET 2010). Here, we provide a simple way to model the impact
of this innovation.

To model virtual showrooms, we follow the approach in Gao and Su (2017b),
where consumers receive an imperfect signal of their valuations.2 For modeling
convenience, we assume that the signal is binary, i.e., a group of consumers remain
interested in the product while the remaining discover that the product is not for
them and leave. Further, we assume that the latter group consists of a fraction
α ∈ (0, 1] of the low-type customers. In other words, if α = 1, the virtual showroom
offers a perfect signal and all consumers learn their types, but if α < 1, the virtual
showroom screens out a fraction α of the low types. For those consumers who
remain interested in the product, including all potential high-type customers and
a fraction 1 − α of the potential low-type customers, they update their posterior
belief about the probability of being high-type to θ ′ = θ/[1 − α(1 − θ)] > θ by
Bayes’ rule. Then, the two models, with and without virtual showrooms, are very
similar. The only difference is that virtual showrooms generate a new consumer pool
by filtering away some potential low-type consumers. As a result, the total demand
size is D′ = [1 − α(1 − θ)]D and a fraction θ ′ of them is of high type.

Table 6.2 summarizes the equilibrium outcome under different scenarios. The
first row shows the benchmark in which customers are “naive” and simply assume
that they are high types. In the second row, customers anticipate potential product
misfit (i.e., low types have zero valuation) and thus are willing to pay up to their
expected valuation θv. The next two rows summarize the full returns model from
Davis et al. (1995) and the partial returns model from Su (2009). The last row
presents the virtual showroom model from Gao and Su (2017b).

The possibility of product misfit suppresses customer willingness-to-pay from
v to θv, and we have seen two broad ways to address this issue: returns policies
and virtual showrooms. Both can raise customer willingness-to-pay above θv.

2The model can be extended to other ways of reducing consumer valuation uncertainty; for
example, online reviews and sampling.
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Table 6.2 Comparison of results

Prices Demand

Naive customers p = v D

No return policy p = θv D

Full returns p = θv + (1 − θ)(r − hr ), r = p D

Partial returns (if hr = 0) p = θv + (1 − θ)r, r = s D

Virtual showrooms p = θ ′v D′

Note: θ ′ = θ/[1 − α(1 − θ)] > θ , D′ = [1 − α(1 − θ)]D < D

However, both may also have some negative impact: generous product returns
(e.g., full returns) may lead to a loss in margin, while virtual showrooms are
accompanied by a loss in demand, which occurs when customers discover that they
are low types.3 In practice, retailers need to consider the cost of handling returns
and the informativeness of the virtual showroom when choosing between the two
approaches.

Finally, we compare the retailer’s profits under the two strategies discussed in this
section, i.e., consumer returns and virtual showrooms. Suppose aggregate demand D

is uncertain and the unsold inventory can be salvaged at price s as in Su (2009). We
have the following result.

Proposition 6.6 Compared to the case of partial returns, the retailer obtains higher
profit with virtual showrooms if and only if α > ᾱ for some ᾱ ∈ (0, 1).

Therefore, when the retailer implements virtual showrooms (without allowing for
product returns), it obtains a higher level of expected profit than that with the return
policy specified in Proposition 6.5, as long as the virtual showroom is informative
enough (i.e., α is large).

6.4 Omnichannel Model

In Sects. 6.2 and 6.3, we reviewed traditional models of customer strategic shopping
behavior in the face of stockout or valuation risks. These models mainly focus
on the operations of one single channel (either store or online). Today, however,
many retailers have realized the need to integrate their existing channels to enrich
customer value proposition and improve operational efficiency. As a result, there is
an emerging focus on “omnichannel retailing” with the goal of providing consumers
with a seamless shopping experience through all available shopping channels (Rigby
2011). In this section, we present a way to extend the traditional model to the
omnichannel environment. The following analysis is based on Gao and Su (2017b).

3The latter is similar to how spot selling differs from advance selling, i.e., spot selling could also
result in a loss in demand by selling to consumers after they realize their true valuations. Readers
can refer to Xie and Shugan (2001) for a detailed discussion.
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There is a retailer who sells a product through two channels, store and online,
at price p. For simplicity, we assume price is exogenously given. We focus on the
retailer’s inventory decision in this section.4 In the store channel, the retailer faces
a newsvendor problem: there is a single inventory decision q to be made before
random demand is realized. The unit cost of inventory is c, and the salvage value
of leftover is zero. The online channel is modeled exogenously: for each unit sold
online, the retailer obtains a net profit margin w if it is not returned, and incurs a net
loss k otherwise. As shown in Gao and Su (2017b), the model can be extended to
the case where online is also a newsvendor problem.

The setup of customer demand is similar as before. The market demand is D with
distribution F . There are two types of customers: A fraction of θ ∈ (0, 1) are high
types, who have positive value v for the product, and the rest are low types with zero
valuation for the product. Customers are homogeneous ex ante: they do not know
their valuation (or type) beforehand, but θ and v are common knowledge. Customers
may learn their valuations before purchase only if they examine the product in
store (due to the physical touch-and-feel experience); otherwise, customers learn
valuations after purchase which may lead to online returns.

Each consumer makes a choice between shopping online directly or going to the
store. If she chooses to buy online directly, she incurs hassle cost ho (e.g., paying
shipping fees or waiting for the product to arrive), and realizes her valuation only
after receiving the product. If she likes the product (i.e., she is high type), then she
keeps it and receives payoff v − p − ho; if she dislikes the product (i.e., she is low
type), then she returns it. Returns are costly to both the retailer and the consumers:
each returned unit generates net loss k > 0 to the retailer and an additional hassle
cost hr > 0 to the consumer. We assume that low-type consumers prefer returning
the product to keeping it, i.e., hr < p. Therefore, the consumer’s expected payoff
from buying online directly is given by

uo = −ho + θ(v − p) − (1 − θ)hr .

On the other hand, if the consumer chooses to go to the store, she has to first
incur hassle cost hs (e.g., traveling to the store or searching for the product in aisles).
Once she is in the store, the customer may encounter two possible outcomes: (1) If
the store is in stock, then she can evaluate the product on the spot: a high type makes
a purchase and receives payoff v − p, while a low type leaves without any purchase
and receives payoff 0. (2) If the store is out of stock, she cannot resolve her value
uncertainty in store, but she can buy the product online and receive an expected
payoff uo instead. Let ξ denote the probability that the store is in stock, and let ξ̂

denote consumers’ beliefs about this probability. We assume that customers arrive
sequentially to the market, but they do not know their own order of arrival. As a
result, everyone has the same belief ξ̂ . Then, given belief ξ̂ , each consumer’s payoff
from visiting the store can be expressed as follows:

4For the discussions of other firm’s decisions in the context of omnichannel retail, readers can refer
to other chapters in this book.
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us(ξ̂ ) = −hs + ξ̂ θ (v − p) + (1 − ξ̂ )uo.

Consumers compare the expected utility from each channel and chooses accord-
ingly. In the spirit of omnichannel choice, i.e., consumers are willing to consider
both channels, we assume v is large enough so that us(1) ≥ 0 and uo ≥ 0.

The retailer anticipates that a fraction φ̂ ∈ [0, 1] of customers will visit the store.
Then, if total demand is D, the retailer expects that the number of customers coming
to the store will be φ̂D; also, since only high-type customers will eventually make
a purchase in the store, given the store inventory level q, the retailer expects that
the number of store customers who find that the store is in stock is Din (q) =
min

(
φ̂D, q/θ

)
, and the remaining Dout (q) =

(
φ̂D − q/θ

)+
will encounter

stockouts when they come to the store. Note that even though the inventory is q,
up to q/θ customers may examine the product in the store because only a fraction θ

of those customers will buy. Then, the retailer’s profit is as follows:

π (q) = pθEDin (q) − cq (6.1)

+ [wθ − k(1 − θ)]EDout (q) (6.2)

+ [wθ − k(1 − θ)](1 − φ̂)ED. (6.3)

Given the store inventory level q, the newsvendor expected profit from selling
the product in the store channel is shown in the first term (6.1) above. The next
two terms, respectively, represent profit from customers who switch online after
encountering stockouts in the store, and customers who buy online directly. For
each unit of online demand, the expected profit is wθ − k(1 − θ), because a fraction
(1 − θ) of online sales is returned. Again, in the spirit of omnichannel retailing,
we assume that wθ − k(1 − θ) > 0, so that the retailer is willing to operate both
channels. Finally, the retailer chooses inventory level q to maximize expected profit.

Definition 6.2 A RE equilibrium (φ, q, ξ̂ , φ̂) satisfies the following:

(i) Given ξ̂ , if us(ξ̂ ) > uo, then φ = 1; otherwise φ = 0;
(ii) Given φ̂, q = arg maxq π(q);

(iii) ξ̂ = A(q);
(iv) φ̂ = φ.

Conditions (i) and (ii) state that under beliefs ξ̂ and φ̂, the consumers and the retailer
are choosing the optimal decisions. Conditions (iii) and (iv) are the consistency
conditions.

The following proposition gives the (Pareto optimal) equilibrium result; we use
the superscript (·◦) to denote the equilibrium outcome for this base scenario.

Proposition 6.7 There exists a threshold ψ◦ ∈ [0, 1] such that
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• if θ < ψ◦, then consumers visit the store and

q◦ = θF̄−1
(

c

p − w + k(1 − θ)/θ

)
> 0;

• if θ ≥ ψ◦, then consumers buy online directly and q◦ = 0.

6.4.1 Mitigating Stockouts In-Store: Real-time Inventory
Information

Suppose the retailer provides real-time store inventory information on its website.
That has been increasingly common in industry. Online shoppers can simply enter
a zip code to check the current status of nearby stores, although the information
may be presented in different ways: Some retailers, e.g., IKEA, show the exact
store inventory level online, while others, e.g., CVS and Walgreens, simply tell
their online customers whether or not the product is currently available in store.
Recently, some retailers, e.g., Target and Macy’s, allow their customers to buy online
and pick up their order in the store shortly after. Through the availability of this
in-store pickup option, customers can also infer the real-time inventory status in
store (Gallino and Moreno 2014). Readers can refer to Gao and Su (2017a) for an
analytical model of this new fulfillment method.

With real-time inventory information, the sequence of consumer arrivals matter:
consumers who arrive early will see that the store is in stock, whereas consumers
who arrive late will encounter stockouts. In the former case, the consumer can go
to the store and receive an expected payoff of us, in = −hs + θ(v − p) because she
will certainly obtain the product if she realizes high valuation. In the latter case, the
consumer will receive nothing from visiting the store and thus will choose to buy
online instead. In this model, the format of the shared real-time information does
not matter; it could be either a binary indication of inventory availability (as in CVS
and Walgreens’s case) or the exact number of units in stock (as in IKEA’s case).
This does not change consumers’ shopping behavior in our model, since consumers
demand one unit of product and thus care only about whether the store is in stock or
not when they arrive in the market.

Each consumer chooses between shopping online directly or going to the store,
given the current store inventory availability status. Let φin denote the fraction of
customers visiting the store when it is in stock. As before, only high-type consumers
will absorb store inventory when they come to the store. Then, the expected number
of customers who see that the store is in stock is Din (q) = min(D, q/(θφin)), and
the remaining Dout (q) = (D − q/(θφin))

+ will find that the store is already out
of stock when they check availability online. Note that the expressions for Din(q)

and Dout(q) are slightly different from before because all consumers, whether they
choose to come to the store or not, will receive the real-time inventory information.
Thus, the retailer’s profit function is as follows:
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π (q) = pθφinEDin (q) − cq (6.4)

+ [wθ − k(1 − θ)] (1 − φin) EDin (q) (6.5)

+ [wθ − k(1 − θ)]EDout (q) . (6.6)

The first two parts of the profit function correspond to the case when the store is in
stock: (6.4) is the newsvendor profit from the store, and (6.5) is the profit from those
who buy online directly. The last part (6.6) corresponds to the case when the store
is out of stock and all consumers buy online.

For the case with real-time inventory information, we use superscript (·i ) to
denote the market outcome, which is given in the following proposition.

Proposition 6.8 With real-time inventory information, there exists a threshold ψi ∈
[ψ◦, 1] such that the market outcome is given as follows:

• If θ < ψi , then consumers visit store if store is in stock, and buy online directly
if store is out of stock:

qi = θF̄−1
(

c

p − w + k(1 − θ)/θ

)
> 0;

• If θ ≥ ψi , then consumers always buy online directly; qi = 0.

Moreover, πi ≥ π◦.

Comparing Proposition 6.8 (after the provision of real-time inventory informa-
tion) and Proposition 6.7 (before the provision of real-time inventory information),
since ψi ≥ ψ◦, we see that providing real-time inventory information may attract
consumers to the store (see Fig. 6.1). In the base scenario, consumers bear in-store
stockout risk because they incur the hassle of going to the store before finding
out whether the store has the product in stock. Now, providing real-time inventory
information eliminates such risk: if the store is in stock, consumers are guaranteed
availability before incurring any sunk cost.

Similar as in the store-only scenario (see Proposition 6.4), Proposition 6.8 also
shows that offering real-time inventory information has no negative effect on an

Fig. 6.1 Comparison of consumer behavior with and without real-time inventory information
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omnichannel retailer either (i.e., πi ≥ π◦). By assuring consumers about inventory
availability in store, the retailer can attract more people to the store; consumers can
then physically inspect the product and realize their valuation before making any
purchase. This helps to reduce potential product returns and increase total profit.

6.4.2 Mitigating Product Misfit Online: Virtual Showrooms

Suppose the retailer implements virtual showrooms in the online channel. To
model the impact of virtual showroom on consumer decision making, we adopt
the approach described at the end of Sect. 6.3. Specifically, after checking with
the virtual showroom, α of the low-type customers discover that the product is
not for them and leave, while the rest (including all the high-types and 1 − α

of the low-types) remain interested in the product and update their belief about
the probability of being high type to θ ′ = θ/[1 − α(1 − θ)] > θ based on the
Bayes’ Rule. As a result, the total demand size is D′ = [1 − α(1 − θ)]D (with
cdf F ′(x) = F(x/[1 − α(1 − θ)]) for any x) and a fraction θ ′ of them is of high
type. Thus, similar to Proposition 6.7, the equilibrium outcome is given in the
following proposition; we use the superscript (·v) to denote the equilibrium outcome
for the scenario with virtual showrooms. Henceforth, without further specification,
we simply refer to this new pool of consumers as the retailer’s consumers.

Proposition 6.9 With virtual showrooms, there exists a threshold ψv ∈ [0, ψ◦]
such that

• if θ < ψv , then consumers visit the store and

qv = θ ′F̄ ′−1
(

c

p − w + k(1 − θ ′)/θ ′

)
> 0;

• if θ ≥ ψv , then consumers buy online directly and qv = 0.

Comparing Proposition 6.9 (after the provision of virtual showrooms) and
Proposition 6.7 (before the provision of virtual showrooms), since ψv ≤ ψ◦,
virtual showrooms may attract customers to buy online instead of in the store (see
Fig. 6.2). This is not surprising. Virtual showrooms give consumers a similar hands-
on experience as in the store. With decreased product value uncertainty, shopping
online becomes more productive and appealing to consumers.

Proposition 6.10 Compared to the base model,

• if θ < ψv or θ ≥ ψ◦, then providing virtual showrooms increases total profit,
i.e., πv > π◦;

• if θ ∈ [ψv,ψ◦), there exists w̄ such that providing virtual showrooms increases
total profit (i.e., πv > π◦) if w > w̄; but reduces total profit (i.e., πv < π◦) if
w < w̄.
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Fig. 6.2 Comparison of consumer behavior with and without virtual showroom

There are three cases discussed in Proposition 6.10. First, if consumers have a
small high-type probability (i.e., θ < ψv), then they always turn to the physical
store for validation before making any purchasing decision. When the store is out of
stock, consumers may choose to buy online directly before resolving product value
uncertainty. In this case, virtual showrooms help by screening out some low-type
consumers beforehand so that the potential number of returns will be smaller.

Second, if consumers have a large high-type probability (i.e., θ ≥ ψ◦), then they
are comfortable buying online. In this case, virtual showrooms serve as the main
source of product information for consumers. By screening out potential low-type
customers before they make any purchase on the website, virtual showrooms help
to avoid returns and increase profits.

However, when θ ∈ [ψv,ψ◦), implementing virtual showrooms may backfire.
In this case, consumers originally visit the store in the base model, but virtual
showrooms attract them to buy online instead. Although the online return rate
decreases from 1− θ (without virtual showroom) to 1− θ ′ (with virtual showroom),
total returns may increase. This is because more people now choose to buy online,
including low types who are destined to return their purchases. The resulting
increase in returns will drive down total profit. Unless the online profit margin is
high enough, customer migration from store to online will be unprofitable for the
retailer. This result offers a possible explanation for fashion retailer H&M’s decision
to remove their virtual showroom (called the Dressing Room) from their website
even though it has been popular among consumers (H&M 2010). This result also
suggests that retailers should be cautious when looking at online return rates and
should not neglect the total number of returns as an informative companion metric.

Proposition 6.11 There exists threshold α1, α2 ∈ [0, 1] such that α1 ≤ α2 and
πv < πo if and only if α ∈ (α1, α2).

Proposition 6.11 demonstrates the importance of the α parameter, i.e., the infor-
mativeness of the virtual showroom. Some implementations of virtual showrooms
involve relatively rudimentary functions (e.g., picture upload), while others use
more advanced virtual reality technologies (e.g., 3D technology) which offer online
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shoppers a more vivid try-on experience. As virtual showrooms become more
informative (i.e., as α increases), Proposition 6.11 shows that it is possible for
them to become less attractive (i.e., πv < π◦) if α ∈ (α1, α2). Specifically, virtual
showrooms help improve retailer’s profit only when α is either sufficiently large
(α ≥ α2) or sufficiently small (α ≤ α1). In other words, attempts to enhance the
informativeness of virtual showrooms, if not significant, may reduce profits. The
reason is as follows: If α is small, the virtual showroom rarely changes customer’s
channel choice decisions; specifically, customers may continue to visit the store in
which case the virtual showroom acts as a backup source of product information
to customers once store is out of stock. As α increases, virtual showrooms tend to
attract customers to purchase online directly due to the lower valuation uncertainty
risk. However, unless the virtual showroom becomes very effective in screening out
low-type customers, it may simply end up attracting online transactions and thus
increasing online returns.

6.5 Conclusion

Omnichannel retailing is rapidly becoming the norm in industry. To study the
impacts of different types of omnichannel business strategies, from the modeling
perspective, it is important to understand how consumers make purchasing decisions
among different channel environments which may involve different types of shop-
ping risks. For instance, it may be hard for customers to verify product availability
before incurring the hassle of visiting the physical location, while purchases in
the digital world may be a bad fit, as customers are unable to fully evaluate the
product due to the lack of touch-and-feel experiences. The risks of stockouts and
product misfit are major concerns for shoppers and retailers. In this chapter, we
present different approaches to model strategic consumer shopping behavior in
the presence of both stockouts and product misfit problems. We first reviewed
traditional models which focus either on stockouts or product misfit. Then, building
upon these models, we introduce a modeling framework to study an omnichannel
environment, where customers and the retailer interact through both online and
offline channels. Here, both stockouts (in-store) and product misfit (online) are
particularly relevant. Omnichannel retail management has received a lot of attention
in both industry and academia, we hope the models reviewed in this chapter could
contribute to this exciting line of research.

Appendix: Proofs

Proof (Proposition 6.1) This is Proposition 1 in Su and Zhang (2009).

Proof (Proposition 6.2) This is Proposition 2 in Su and Zhang (2009).
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Proof (Proposition 6.3) As discussed in the chapter, the optimal price must be
pi = v − h. Then, the optimal quantity that maximizes the newsvendor profit π =
(v − h)E min(D, q) − cq is simply given by F̄ (qi) = c/(v − h).

Proof (Proposition 6.4) According to Propositions 1–3 in Su and Zhang (2009), we
have π∗ = vE min(D, q∗) − cq∗ − hED, πc = vE min(D, qc) − cqc − hED

and πc > π∗. Thus, to prove Proposition 6.4, we simply need to show πi > πc.
Note πi = (v − h) E min

(
D, qi

) − cqi > (v − h)E min (D, qc) − cqc >

pcE min (D, qc) − cqc = πc, where the first inequality is because qi is the unique
maximizer of π(q) = (v − h)E min (D, q) − cq, and the second inequality is due
to the fact that pc = v − h/A(qc) < v − h. This completes the proof.

Proof (Proposition 6.5) This is a special case of Proposition 2 in Su (2009).

Proof (Proposition 6.6) With virtual showrooms, the retailer’s profit function is

π(q) = θ ′vE min(D′, q) + s(q − E min(D′, q)) − cq

= (θv − s(1 − α(1 − θ)))E min(D, q̃) − (c − s)(1 − α(1 − θ))q̃ � π̃(q̃),

where q̃ = q/(1 − α(1 − θ)). Denote q̃v = arg maxq̃ π̃ (q̃), and thus the optimal
profit is πv = π̃(q̃v). By Envelope Theorem,

∂πv

∂α
= s(1 − θ)E min(D, q̃v) + (c − s)(1 − θ)q̃v > 0.

Denote q∗ and π∗ as the optimal inventory level and profit with partial returns.
If α = 0, then

πv = (θv−s)E min(D, q̃v)−(c−s)q̃v < (θv−θs)E min(D, q̃v)−(c−s)q̃v < π∗;

if α = 1, then

πv = (θv − θs)E min(D, q̃v) − θ(c − s)q̃v > (θv − θs)E min(D, q∗) − θ(c − s)q∗

> (θv − θs)E min(D, q∗) − (c − s)q∗ = π∗.

Thus, we can conclude the result.

Proof (Proposition 6.7) This is Proposition 1 in Gao and Su (2017b).

Proof (Proposition 6.8) The equilibrium outcome is Proposition 6 in Gao and Su
(2017b). The result that πi ≥ π◦ can be derived from Proposition 7 in Gao and Su
(2017b).

Proof (Proposition 6.9) This is Proposition 4 in Gao and Su (2017b).

Proof (Proposition 6.10) This is Proposition 5 in Gao and Su (2017b).
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Proof (Proposition 6.11) By Proposition 6.9, ψv ≤ ψo for any α ∈ [0, 1]. There
are two cases:

• If θ ≥ ψo: Then by Proposition 6.10, πv > πo for any α. Thus, α1 = α2 = 0.
• If θ < ψo: Note it is easy to check that ψv is decreasing in α. Define α1 =

arg minα∈[0,1] |θ − ψv (α)|. Then, if α ∈ [0, α1), then ψv(α) > θ and thus πv >

πo by Proposition 6.10. If α ≥ α1, then ψv ≤ θ . Then, we have

π◦ = (p − w + k(1 − θ)/θ)E min(θD, q◦) − cq◦ + (wθ − k(1 − θ))ED,

and

πv = wEθ ′D′ − kE(1 − θ ′)D′ = wEθD − kE(1 − α)(1 − θ)D.

Define function

g(α) = π◦ −πv = (p−w+k(1 − θ)/θ)E min(θD, q◦)−cq◦ −kα(1−θ)ED.

Note that ∂g/∂α = −k(1 − θ)ED < 0, which implies that there exists α2 ≥ α1
such that π◦ > πv ⇔ α < α2. Finally, let us show that it is possible to have
α2 > α1. Suppose α1 ∈ (0, 1). Thus, ψv(α1) = θ . Since g(0) > 0 and ∂g/∂α <

0, there exists ᾱ > 0 such that g(ᾱ) = 0. Thus, if θ ∈ (ψv(ᾱ), ψo), then we
must have ᾱ > α1, because ψv(α1) = θ and ψv(α) is decreasing in α. Then, this
ᾱ is the α2 we are looking for.
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Chapter 7
On-Demand Customization and Channel
Strategies

Li Chen, Yao Cui, and Hau L. Lee

Abstract In this chapter, we study the impact of two major technological advances
in demand fulfillment—the emergence of dual channels in retail (i.e., online and in-
store) and the adoption of on-demand customization technology (such as additive
manufacturing or 3D printing). Our analysis shows that such technology adoption
can have differential impacts to the two channels. The technology leads to increased
product variety offered online, as well as allows the firm to charge a price premium
for online customers. Yet it also induces the firm to offer a smaller product variety
and a reduced price in-store. Moreover, the online demand increases (decreases)
if the customer online wait cost is low (high). The firm’s profitability with the
new technology is driven by the production setup cost of the traditional production
technology it replaces and also by how much customers care about the product’s
custom fit.

Keywords On-demand customization · Dual channels · Product variety ·
Pricing · Supply chain management

7.1 Introduction

With the advancement of technology, some innovative consumer goods companies
such as Adidas and Nike have started to experiment with 3D printing, a form of on-
demand customization technology, for real production (Economist 2017). Walmart
has been reported to test the 3D printing technology to provide more options for
consumers: purchase online for manufacture in-store, or manufacture online and
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ship to consumers (Massie 2013). Besides the 3D printing technology, Amazon
has recently patented an on-demand apparel manufacturing system, which uses
proprietary algorithms to print custom patterns on fabrics, and then cuts and sews
them to fill online orders for suits, dresses, and other garments (Wingfield and Cou-
turier 2017). On-demand customization has also been implemented by on-demand
book printing platforms (e.g., Espresso Book Machine, Amazon’s CreateSpace,
BookLocker). The benefits of such on-demand customization are many—companies
can offer much more product variety than before, improve customer satisfaction
further with perfect fit products, and shorten response times significantly for tailor-
made products. This chapter aims at analytically understanding some of these
benefits when companies adopt the on-demand customization technology to meet
online demand for consumer goods.

Online sales have been increasing worldwide at unprecedented rates (e.g., it
was 19.4% at Amazon, 40% at Apple, 9% at Walmart, and 12.5% at Macy’s; see
Zaczkiewicz 2017). Among the top 10 US retailers with the highest e-commerce
sales in 2017, eight of them also sell through their own stores. Dual channels (with
sales via both brick-and-mortar stores and online) have become a mainstream means
for companies to interact with consumers, which form the basis of our analysis
of the impact of the on-demand customization technology. The emergence of such
technology will likely be first introduced to factories (such as in the Adidas example
cited by Economist 2017 and outlined in the Amazon’s patent). When this happens,
the factory would serve two kinds of demands: online consumer demand and store
replenishment. In the latter, since store replenishment is still in bulk, the factory can
continue to use mass production systems for cost efficiency.

The impact of on-demand customization in the presence of dual channels can
be analyzed in multiple dimensions. First, from the consumer’s point of view, the
consumer’s choice preferences could be affected by the number of product options
offered, ranging from a finite set (under traditional technology) to possibly infinite
(under the on-demand customization technology). The consumer’s utility, measured
by how close the chosen option fits the exact needs of the consumer, the waiting
time for the product, and the prices that the consumer has to pay for the product,
can be affected as a result of on-demand customization. Second, the merchant’s
profits could be affected, through its channel strategies of product offerings and the
associated prices charged. Third, how would on-demand customization affect the
split of sales between the online and in-store channels?

We develop a stylized model to address the above questions. In our model, con-
sumers as customers are heterogeneous in two dimensions: (1) the waiting cost they
incur from purchasing online and (2) the fit cost they incur because the product types
offered by the merchant may not meet their needs exactly. To obtain some baseline
insights for the problem, we assume the total customer demand is deterministic and
focus on comparing the firm’s optimal channel strategies for product offering and
pricing with and without adopting the on-demand customization technology online.

In our model, we assume that the customization technology is deployed at the
factory level, so that it is used for online orders only. Currently, this technology is
still very expensive, and substantial training investments have to be made, so that
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it is not yet feasible for it to be implemented at all stores, except for very simple
products.

A few key insights from our study are highlighted as follows. First, adopting the
on-demand customization technology for online customers gives rise to a substitu-
tion effect of technological innovation, i.e., the traditional technology is replaced
by a better on-demand customization technology (Lee 2007). Such technology
substitution leads to the variety effect, enabled by the elimination of the production
setup cost, and allows the firm to offer perfect customization and charge a price
premium for online customers. Second, compared to the base case with traditional
technology, adopting on-demand customization to meet online demand will reduce
the variety of in-store product offering as well as the associated price. Moreover,
the demand segmentation between the online and in-store channels depends on the
customers’ online purchase waiting cost. If the waiting cost is small, more demand
will be steered to the online channel; and if the waiting cost is large, the opposite
occurs. Finally, we show that the firm’s profitability with this new technology is
driven by the production setup cost of the traditional technology it replaces and also
by how much customers care about the product custom fit.

The remainder of this chapter is organized as follows. After a review of relevant
literature in Sect. 7.2, we describe the model setup and present the main results in
Sect. 7.3. We conclude the chapter in Sect. 7.4 with a discussion of future research
directions.

7.2 Literature Review

Our study is related to and contributes to the mass customization literature. See
Lancaster (1990), Ho and Tang (1998), and Ramdas (2003) for reviews of product
variety literature. Lee (1996) studies the product/process postponement design in
both built-to-order (BTO) and built-to-stock (BTS) production modes. Lee and Tang
(1997) study the optimal point of product differentiation (i.e., the stage after which
the products assume their unique identities). Dobson and Yano (2002) uses integer
programming to analyze the firm’s optimal decisions of which products to offer, how
to price them, and whether each should be make-to-stock or make-to-order. Jiang
et al. (2006) analyze a mass customization system consisting of an initial BTS stage
and a final BTO stage. Alptekinoğlu and Corbett (2010) study the trade-off between
the increased ability to precisely meet customer preferences and the increased
lead time from order placement to delivery associated with customized products.
Desai et al. (2001) and Kim et al. (2013) study the marketing-manufacturing trace-
off under component commonality strategies, i.e., while commonality can lower
manufacturing cost, such a design may hinder product differentiation. Liu and Cui
(2010) show that a manufacturer may choose to extend a horizontally differentiated
product line in a decentralized channel but not in a centralized channel. Çil and
Pangburn (2017) studies the impact of the market repercussions resulting from
increased brand dilution on the firm’s mass customization strategy. There are also
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a series of papers (e.g., Dewan et al. 2003, Syam et al. 2005, Syam and Kumar
2006, Alptekinoğlu and Corbett (2008), Mendelson and Parlaktürk 2008a,b, Xia
and Rajagopalan 2009) that study the competition between a firm that uses mass
customization and a firm that uses traditional production, or between firms who
compete on adoption of mass customization. Different from the existing literature
on mass customization, our study considers a dual-channel setting and studies the
impact of adopting mass customization in the online channel on the firm’s product
offering and pricing strategies in both channels.

As an important technology to implement mass customization, 3D printing has
started to attract the attention from operations management researchers. There is
an emerging stream of research that studies the impact of 3D printing technology
on manufacturing and supply chain management. For example, Song and Zhang
(2016) develop a queueing model to analyze and quantify the impact of 3D printing
on spare parts logistics. Dong et al. (2017) study the impact of 3D printing on a
firm’s manufacturing strategy and product assortment decision, and show that the
implications from adopting the 3D printing technology is significantly different
from adopting the traditional flexible technology. Chen et al. (2018) consider two
adoption cases of 3D printing in a dual-channel retail setting (adopting in the online
channel only, and adopting in both online and in-store channels), and study the
firm’s integrated decision making regarding product offering, prices for the two
channels, as well as inventory decisions.

7.3 Model and Results

We consider a firm that produces and sells products through two channels, a
brick-and-mortar store channel and an online channel. Hereafter, without specific
mention, “in the store” or “in-store” means in the brick-and-mortar store. We
assume that in-store demand and online demand are endogenously determined by
customers’ channel preferences and product preferences, which are specified as
follows. Customers are heterogeneous in two dimensions: (1) the waiting cost they
incur from purchasing online, and (2) the fit cost they incur because the product
types offered by the firm do not meet their needs exactly.

Specifically, to model customers’ heterogeneous channel preferences, we assume
that there are three types of customers described as follows.

Type I customers (online-acceptable without waiting cost) For these cus-
tomers, waiting cost is negligible when purchasing online. For example, some
people are prone to shopping online because they want to avoid traveling to the
brick-and-mortar store or fear stockout at the store (Gao and Su 2017a,b).
Moreover, some people can avoid the shipping fee because they are loyal
customers to the firm (e.g., Amazon Prime). From a survey study, Konuş et al.
(2008) find that 37% of respondents tend to use the Internet and catalogs for both
information search and purchase. In our model, Type I customers correspond to
α proportion of the population (0 < α < 1).
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Type II customers (online-acceptable with waiting cost) These customers
incur a finite waiting cost e > 0 when purchasing online. For example, by
purchasing online, customers forgo the joy of receiving the product immediately,
which might create a disutility for some people. The existence of customer
disutility from purchasing online has been empirically established by studies
such as Bart et al. (2005) and Forman et al. (2009). Type II customers correspond
to β proportion of the population (0 < β < 1 and α + β < 1).

Type III customers (in-store only) These customers do not consider the online
option (i.e., their waiting cost is infinity), and may only purchase from the
brick-and-mortar store. For example, there are people who have not accepted
the concept of online shopping. In the study of Konuş et al. (2008), 23% of
respondents are “store-focused” who reveal favorable attitudes toward brick-and-
mortar stores and relatively unfavorable attitudes toward online channels. In our
model, Type III customers correspond to the remaining 1 − α − β proportion of
the population.

Notice that for analytical simplicity, we have assumed that the customer waiting
costs follow discrete types. The model can be generalized to allow for continuous
customer waiting costs without changing the main insights.

Besides customers’ heterogeneous channel preferences, we model customers’
heterogeneous product preferences using the circular city framework (Salop 1979),
which is a variant of the classic Hotelling (1929) model. We assume that customers
are located on a circle of unit circumference. Customers are uniformly distributed
on the circle. Each customer’s location represents her ideal product type (e.g., her
size or favorite color of a product), and the arc distance between a product location
and the customer location measures the customer’s misfit from this product. Each
customer may only purchase the product type that is closest to her location on the
circle. Given an in-store price p, the customer’s utility from purchasing in-store
a product that is x arc distance away is v − p − tx, where v is the valuation of
customers for the ideal product type, t is the fit cost parameter (which corresponds
to the transportation cost parameter in the classic Hotelling model) and measures
customers’ sensitivity to product differences, and tx is the fit cost of customer x,
with t > 0. Similarly, given an online price p, the customer’s utility is v−p− tx−e

from purchasing online (note that e = 0 for Type I customers and e = ∞ for Type
III customers). See Fig. 7.1 for an illustration.

To keep the model tractable, we assume that the total customer demand μ from
the unit circle is deterministic. This is a fairly common assumption used in the
product line design and product differentiation literature. To meet the demand from
the two channels, the firm may use the traditional technology or adopt the on-
demand customization technology in the online channel. In the former case, the
firm uses the traditional technology to produce products sold in both channels. In the
latter case, the firm uses on-demand customization to produce products sold online
and uses the traditional technology to produce products sold in-store. This would
involve adopting the new technology (e.g., installing 3D printers) in the factory.
The firm uses both types of technology in its production in the factory, and can
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Fig. 7.1 Illustration of the
circular city customer utility
model x v – p – tx – e 

effectively offer “infinite” types of product online to cover the entire customer circle
(where customers do not incur any fit costs). We assume that producing one unit of
product requires one unit of common raw material under both traditional and on-
demand customization technologies, and that the product quality is the same under
both technologies.

The firm incurs marginal cost c for each unit of product, regardless of the product
type. We further assume that the marginal cost remains the same when the on-
demand customization technology is adopted online. When using the traditional
technology, the firm incurs a production setup cost s for each product type it offers,
due to factors such as switchover and retooling. Thus, given n product types, the
total setup cost is sn. Additionally, in order to adopt the on-demand customization
technology, the firm incurs a fixed cost k from purchasing new equipment and
training employees.

The firm chooses the number of horizontally differentiated products to offer, as
well as the prices for products sold in-store and online, to maximize its total profit. In
what follows, we analyze the firm’s optimal product offering and pricing strategies
in each case. Then, by comparing the optimal strategies across the two cases, we
obtain how the adoption of the on-demand customization technology in the online
channel affects the firm’s product types and prices in each channel and develop
insights regarding how online on-demand customization creates value to the firm.
To avoid trivial scenarios, we make the assumption of (v − c)μ ≥ √

2stμ, which
indicates that the firm earns a non-negative profit under the traditional technology.

7.3.1 Base Case with Traditional Technology

In this section, we analyze the firm’s optimal strategy under the traditional technol-
ogy. In this case, the firm produces n types of horizontally differentiated products,
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and chooses price po for all products sold online and pi for all products sold in-
store (subscript “o” represents online and subscript “i” represents in-store). Because
product types are horizontally differentiated (i.e., differentiated in a dimension other
than quality), the firm charges the same price for all product types within each
channel. For example, apparel producers usually sell the same style in different sizes
and colors and charge the same price for all sizes and colors.

To derive the firm’s optimal strategy in this case, we need to first characterize
the customer choices. Consider the arc on the customer circle that is centered at
the location of any product type and has arc length 1

n
. This arc corresponds to the

demand base for this product type. Moreover, the customers’ utilities are symmetric
on two sides of the product location. Thus, to analyze the customer choices, we
focus on the arc on one side of the product location, where the customer’s distance
from her ideal product type, x, ranges in 0 ≤ x ≤ 1

2n
. We derive the purchasing

decisions of each type of customers as follows.

• Type I customers: Their utility from purchasing online is v − po − tx, and their
utility from purchasing in-store is v − pi − tx. Then, Type I customers purchase
online if v − po − tx ≥ v − pi − tx and v − po − tx ≥ 0, purchase in-store if
v−pi−tx > v−po−tx and v−pi−tx ≥ 0, and do not purchase otherwise. Thus,
Type I customers purchase online if pi − po ≥ 0 and 0 ≤ x ≤ min(

v−po

t
, 1

2n
),

and purchase in-store if pi − po < 0 and 0 ≤ x ≤ min(
v−pi

t
, 1

2n
).

• Type II customers: Their utility from purchasing online is v − po − tx − e, and
their utility from purchasing in-store is v − pi − tx. Then, Type II customers
purchase online if v − po − tx − e ≥ v − pi − tx and v − po − tx − e ≥ 0,
purchase in-store if v − pi − tx > v − po − tx − e and v − pi − tx ≥ 0, and do
not purchase otherwise. Thus, Type II customers purchase online if pi − po ≥ e

and 0 ≤ x ≤ min(
v−po−e

t
, 1

2n
), and purchase in-store if pi − po < e and 0 ≤

x ≤ min(
v−pi

t
, 1

2n
).

• Type III customers: Their utility from purchasing in-store is v −pi − tx, so Type
III customers purchase in-store if v−pi −tx ≥ 0, and do not purchase otherwise.
Thus, Type III customers purchase in-store if 0 ≤ x ≤ min(

v−pi

t
, 1

2n
).

Based on the customer choices, we derive the firm’s profit function as the
following:

Π(n, po, pi) = (po − c)
[
αμ min

(
v−po

t , 1
2n

)
+ βμ min

(
v−po−e

t , 1
2n

)]
2n

+ (pi − c)(1 − α − β)μ min
(

v−pi
t , 1

2n

)
2n − sn, if pi − po ≥ e;

= (po − c)αμ min
(

v−po
t , 1

2n

)
2n

+ (pi − c)(1 − α)μ min
(

v−pi
t , 1

2n

)
2n − sn, if 0 ≤ pi − po < e;

= (pi − c)μ min
(

v−pi
t , 1

2n

)
2n − sn, if pi − po < 0.
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Depending on the relationship between po and pi , Π(n, po, pi) takes different
forms and as is shown above, there are three possible scenarios. Without loss of
generality, we restrict the prices to 0 ≤ po, pi ≤ v in all our analyses, because
a price higher than v does not yield any sales. Let the triple (n∗, p∗

o, p
∗
i ) be the

optimal solution that maximizes the profit function Π(n, po, pi), and Π∗ be the
optimal profit. The following proposition summarizes the firm’s optimal strategy in
this case:

Proposition 7.1 Under the traditional technology, the firm offers n∗ = √
μt/(2s)

types of product at optimal prices p∗
o = p∗

i = v − √
st/(2μ). Under the optimal

strategy, all Type I customers purchase online, all Type II and Type III customers
purchase in-store. Thus, the firm’s online demand is αμ and the in-store demand is
(1 − α)μ. The firm’s optimal profit is Π∗ = (v − c)μ − √

2stμ.

Proposition 7.1 characterizes the firm’s optimal strategy under traditional
technology. Consistent with previous literature (e.g., Salop 1979, Riordan 1986,
De Groote 1994), we ignore the integer constraint for n. The optimal number
of product types is n∗ = √

μt/(2s), and the optimal price is v − √
st/(2μ) for

both channels. Under the traditional technology, given the symmetric level of
customization in both channels, the firm charges the same price in both channels.
The optimal price is

√
st/(2μ) below the customer valuation v, which is due to the

misfit of product types. Note that n∗ = t
2(v−p∗) , which indicates that a higher price

should be associated with a broader product offering so that the firm does not screen
too many customers with the higher price. Moreover, the firm’s optimal product
offering and pricing strategy induces Type I customers to purchase online, and Type
II and Type III customers to purchase in-store.

7.3.2 Adopting On-Demand Customization Technology Online

In this section, we analyze the firm’s optimal strategy when adopting the on-
demand customization technology online. In this case, the firm uses the traditional
technology to produce n types of products sold in-store. For online demand, because
of on-demand customization, the firm can customize products according to each
customer’s need and customers do not incur any misfit. Thus, the firm effectively
offers infinite product types online.

Same as in the case with traditional technology, in order to characterize the
customer choices, we consider the arc on one side of any product location with
customer distance ranging in 0 ≤ x ≤ 1

2n
. The analysis is as follows.

• Type I customers: Their utility from purchasing online is v −po, and their utility
from purchasing in-store is v − pi − tx. Then, Type I customers purchase online
if v−po ≥ v−pi − tx and v−po ≥ 0, purchase in-store if v−pi − tx > v−po

and v − pi − tx ≥ 0, and do not purchase otherwise. Thus, Type I customers
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purchase online if min(
po−pi

t
, 1

2n
) ≤ x ≤ 1

2n
, and purchase in-store if 0 ≤ x <

min(
po−pi

t
, 1

2n
). Note that if pi − po > 0, all Type I customers purchase online.

• Type II customers: Their utility from purchasing online is v − po − e, and their
utility from purchasing in-store is v −pi − tx. Then, Type II customers purchase
online if v − po − e ≥ v − pi − tx and v − po − e ≥ 0, purchase in-store if
v−pi−tx > v−po−e and v−pi−tx ≥ 0, and do not purchase otherwise. Thus,
Type II customers purchase online if po ≤ v−e and min(

po−pi+e
t

, 1
2n

) ≤ x ≤ 1
2n

,
and purchase in-store if 0 ≤ x < min(

po−pi+e
t

,
v−pi

t
, 1

2n
).

• Type III customers: Same as in Case 1, Type III customers purchase in-store if
0 ≤ x ≤ min(

v−pi

t
, 1

2n
).

Based on the customer choices, we derive the firm’s profit function as the
following:

Π(n, po, pi)

= (po − c)αμ
(

1
2n

− po−pi
t

)+
2n

+ (pi − c)
[
αμ min

(
po−pi

t , 1
2n

)
+ (1 − α)μ min

(
v−pi

t , 1
2n

)]
2n − sn − k,

if pi − po ≤ 0 and po > v − e;

= (po − c)
[
αμ

(
1

2n
− po−pi

t

)+ + βμ
(

1
2n

− po−pi+e
t

)+ ]
2n

+ (pi − c)
[
αμ min

(
po−pi

t , 1
2n

)
+ βμ min

(
po−pi+e

t , 1
2n

)

+ (1 − α − β)μ min
(

v−pi
t , 1

2n

) ]
2n − sn − k, if pi − po ≤ 0 and po ≤ v − e;

= (po − c)αμ + (pi − c)(1 − α)μ min
(

v−pi
t , 1

2n

)
2n − sn − k,

if pi − po > 0 and po > v − e;

= (po − c)
[
αμ + βμ

(
1

2n
− po−pi+e

t

)+
2n
]

+ (pi − c)
[
βμ min

(
po−pi+e

t , 1
2n

)

+ (1 − α − β)μ min
(

v−pi
t , 1

2n

) ]
2n − sn − k, if 0 < pi − po < e and po ≤ v − e;

= (po − c)(α + β)μ + (pi − c)(1 − α − β)μ min
(

v−pi
t , 1

2n

)
2n − sn − k,

if pi − po ≥ e and po ≤ v − e.

Depending on the relationship between po and pi , Π(n, po, pi) takes different
forms and as is shown above, there are five possible scenarios. Let (n†, p

†
o, p

†
i ) be

the optimal solution that maximizes the profit function Π(n, po, pi), and Π† be the
optimal profit. The following proposition summarizes the firm’s optimal strategy in
this case:
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Proposition 7.2 When the firm adopts the on-demand customization technology to
serve online demand, there exists a threshold

ē =
√

st
√

2
(
1 − α

4

)
μ +

√
2
(
1 − α

4

)
μ − 2βμ

α+β

such that:

(i) If e ≥ ē, the firm offers n† =
√(

1 − α
4

)
μt
2s

types of product at optimal prices

p
†
o = v − 1

2

√
st

2(1−α/4)μ
and p

†
i = v −

√
st

2(1−α/4)μ
. Moreover, p

†
o > p

†
i .

Under the optimal strategy, Type I customers purchase online if (p
†
o − p

†
i )/t ≤

x ≤ 1/(2n†) and in-store if 0 ≤ x < (p
†
o − p

†
i )/t , all Type II and Type III

customers purchase in-store. Thus, the firm’s online demand is αμ/2 and the
in-store demand is (1 − α/2)μ. The firm’s optimal profit is Π† = (v − c)μ −√

2 (1 − α/4) stμ − k.

(ii) If e < ē, the firm offers n† =
√(

1 − α+β
4

)
μt/

[
2s − β2μe2

(α+β)t

]
types of product at

optimal prices

p†
o = v − 1

2

√√√
√

st
2 − β2μe2

4(α+β)
(
1 − α+β

4

)
μ

− βe

2(α + β)
and p

†
i = v −

√√√
√

st
2 − β2μe2

4(α+β)
(
1 − α+β

4

)
μ

.

Moreover, p
†
o > p

†
i . Under the optimal strategy, Type I customers purchase

online if (p
†
o − p

†
i )/t ≤ x ≤ 1/(2n†) and in-store if 0 ≤ x < (p

†
o − p

†
i )/t ,

Type II customers purchase online if (p
†
o − p

†
i + e)/t ≤ x ≤ 1/(2n†) and in-

store if 0 ≤ x < (p
†
o − p

†
i + e)/t , all Type III customers purchase in-store.

Thus, the firm’s online demand is
{

α+β
2 − βe

√(
1 − α+β

4

)
μ/

[
2st − β2μe2

α+β

]}
μ

and the in-store demand is
{

1− α+β
2 +βe

√(
1 − α+β

4

)
μ/

[
2st − β2μe2

α+β

]}
μ. The

firm’s optimal profit is Π† = (v−c)μ−
√(

1 − α+β
4

)(
2st − β2μe2

α+β

)
μ− βμe

2 −k.

Proposition 7.2 characterizes the firm’s optimal strategy when adopting on-
demand customization online. Depending on whether Type II customers’ waiting
cost if high (i.e., e ≥ ē) or low (i.e., e < ē), the firm’s optimal strategy takes
different forms and the resulting customer choice is different. Different from the
case with traditional technology, when the firm adopts on-demand customization
online, the firm should charge a higher price online than in the store. Thus, Type I
customers need to trade off the benefit of a better fit from purchasing online and the
benefit of a lower price from purchasing in-store. If a Type I customer cannot find a
product that is close enough to her ideal type from the firm’s in-store offerings (i.e.,
if (p

†
o − p

†
i )/t ≤ x ≤ 1/(2n†)), then she purchases online to pursue the improved

fit; otherwise she purchases in-store to take advantage of the lower price. Type II
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customers face the same trade-off as Type I customers, but they also need to factor
in their waiting cost from purchasing online. Thus, compared to Type I customers,
a smaller proportion of Type II customers choose to purchase online. As stated in
Proposition 7.2, if Type II customers’ waiting cost is low (i.e., e < ē), then the
condition for them to purchase online is (p

†
o − p

†
i + e)/t ≤ x ≤ 1/(2n†), which is

more stringent than the condition for Type I customers to purchase online. If Type
II customers’ waiting cost is high (i.e., e ≥ ē), then none of them purchases online.
As we can see, when the firm adopts on-demand customization online, because
the firm offers different levels of customization in different channels, customers’
channel choices become more complicated. Although the firm offers infinite types
of customized products in the online store, the optimal online price is affected by
the misfit from the store and is hence lower than v.

7.3.3 Comparison of Channel Strategies

In this section, we compare the optimal strategies and profits we have obtained in
the previous sections. Based on the comparison, we discuss the effect of adopting
on-demand customization technology in the online channel on the firm’s channel
strategies, as well as the value of on-demand customization.

Proposition 7.3

(i) n† < n∗.
(ii) p

†
o > p∗

o .
(iii) p

†
i < p∗

i .

(iv) Compared to the case with traditional technology, if e > e where e = (β−α)+
β

·
√

(α+β)st
2(α+β−αβ)μ

, the firm’s online demand is lower and the in-store demand is
higher when it adopts on-demand customization online. If e ≤ e, the opposite
occurs. Moreover, e < ē.

(v) Π† ≥ Π∗ if and only if k ≤ k̄ where

k̄ =
⎧
⎨

⎩

√
2stμ −

√
2
(
1 − α

4

)
stμ, if e ≥ ē,

√
2stμ −

√(
1 − α+β

4

)(
2st − β2μe2

α+β

)
μ − βμe

2 if e < ē.

Moreover, k̄ > 0, so Π† > Π∗ when k = 0.
(vi) Π† − Π∗ is increasing in both t and s.

In Proposition 7.3, we compare the firm’s optimal strategies when it adopts on-
demand customization online, and when it uses the traditional technology. When the
firm starts to sell customized products online, its online price increases because it
can charge a price premium due to perfect customization. At the same time, the firm
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offers a smaller product selection in-store and correspondingly decreases its price
in the store.

Part (iv) of Proposition 7.3 characterizes how the firm’s demand in each channel
changes when it adopts on-demand customization online. Recall that when the
firm uses the traditional technology, Type I customers purchase online and Type II
customers purchase in-store. When the firm uses on-demand customization online,
it segments customers in a different way. As we have discussed above, both Type I
and Type II customers need to trade off the better fit from purchasing online and the
lower price from purchasing in-store. Thus, those Type I customers who have low fit
costs will switch to purchase in-store and those Type II customers who have high fit
costs will switch to purchase online. Moreover, the switching of Type II customers is
also determined by their waiting cost e. If their waiting cost is high (i.e., e > e), not
many Type II customers would want to switch to purchase online, so the firm’s total
online demand becomes lower, whereas the total in-store demand becomes higher
when adopting on-demand customization online. On the other hand, if the waiting
cost is low (i.e., e ≤ e), then Type II customers who switch to purchase online
outnumber the Type I customers who switch to purchase in-store, so the firm’s total
online demand becomes higher, whereas the total in-store demand becomes lower
when the firm adopts on-demand customization online. In addition, notice that when
α ≥ β, e = 0. In this case, the firm’s online demand always becomes lower while the
in-store demand always becomes higher when adopting on-demand customization
online. This is because Type I customers outnumber Type II customers, and the
switching of Type I customers to the store dominates the switching of Type II
customers to online. Therefore, when adopting on-demand customization online,
the firm should have a good understanding of the customers’ waiting cost from
purchasing online, and then determine the product offering and pricing strategies
accordingly.

Part (v) of Proposition 7.3 states that the firm achieves a higher profit by adopting
on-demand customization online as long as the fixed cost of technology adoption
is not too high (i.e., k ≤ k̄). Additionally, the threshold k̄ is strictly positive,
indicating that if we ignore the fixed cost as a sunk cost, the operating profit is
always improved when the firm adopts on-demand customization online. Adopting
on-demand customization online creates two benefits for the firm. First, the new
technology allows the firm to achieve perfect customization and eliminate the fit
cost for the customers, and hence enables the firm to charge a price premium for
products sold online. Second, adopting on-demand customization online reduces
the number of product types that the firm offers in the store, and hence reduces
the firm’s production setup cost. Therefore, the firm achieves another benefit of
setup cost reduction. Part (vi) of Proposition 7.3 indicates that the benefit of perfect
customization becomes stronger when customers’ fit cost is higher, and the benefit
of setup cost reduction becomes stronger when it is more costly to switch over
between product types under the traditional production technology.
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7.4 Concluding Remarks

In this chapter, we have presented a baseline model to analyze the impact of on-
demand customization on retail product offering and pricing in a dual-channel
setting. Overall, we have shown that adopting the on-demand customization tech-
nology for the online channel gives rise to a substitution effect of technological
innovation. Such technology substitution has differential impacts to the online
versus offline channels. It allows the firm to offer perfect customization and charge
a price premium for online customers. At the same time, the firm offers a smaller
product variety in the store at a reduced price. The magnitude of online demands will
increase as a result of this adoption, when the cost of waiting for online customers
is low. With the trend of online merchants offering faster and faster deliveries to
orders, our result shows that customization technology will also help to accelerate
the growth of the online markets.

Our work is a first step toward understanding the impact of the on-demand
customization technology on retail supply chains. We are currently studying
several important extensions of the current baseline model in the context of 3D
printing (Chen et al. 2018). First, for analytical tractability, we have assumed
the total customer demand as deterministic. Relaxing this assumption to allow
for random demand would reveal further insights on the benefits of the build-to-
order production enabled by the new technology, over the build-to-stock mode
of traditional production technology. Second, with random demand, there will
be inventory mismatch at the retail stores. When there is a stockout at a retail
store, customers may switch to buy online. It is important to understand how such
stockout-based substitution would affect the firm’s channel strategies. Third, the
on-demand customization technology such as 3D printing may involve a higher
marginal production cost than the traditional technology, which might be another
factor that affects the firm’s channel strategies. Finally, as technological advance-
ment continues or when there is more widespread adoption of the customization
technology that drives down the cost of implementing such a technology, it may
be possible for on-demand customization technology to be used to meet the in-
store demand. When that happens, there will be additional structural changes in the
supply chain. It is important to understand how such structural changes would affect
the firm’s channel strategies.

Appendix: Proofs of Propositions

Proof of Proposition 7.1

To analyze the profit function and derive the optimal strategy, we define three
subcases in Case 1: Case 1.1 (pi − po ≥ e), Case 1.2 (0 ≤ pi − po < e), Case 1.3
(pi − po < 0).
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In Case 1.1, depending on n, the profit function becomes

Π1.1(n, po, pi)

= (po − c)(α + β)μ + (pi − c)(1 − α − β)μ − sn, if 1
2n

<
v−pi

t
;

= (po − c)(α + β)μ + (pi − c)(1 − α − β)μ
( v−pi

t

)
2n − sn,

if v−pi

t
≤ 1

2n
<

v−po−e
t

;
= (po − c)

[
αμ + βμ

( v−po−e
t

)
2n
]

+ (pi − c)(1 − α − β)μ
( v−pi

t

)
2n − sn, if v−po−e

t
≤ 1

2n
<

v−po

t
;

= (po − c)
[
αμ

( v−po

t

) + βμ
( v−po−e

t

)]
2n

+ (pi − c)(1 − α − β)μ
( v−pi

t

)
2n − sn, if 1

2n
≥ v−po

t
.

If 1
2n

<
v−pi

t
which requires n is large enough, Π1.1(n, po, pi) is decreasing in n,

so 1
2n

<
v−pi

t
is dominated by v−pi

t
≤ 1

2n
<

v−po−e
t

. If v−pi

t
≤ 1

2n
<

v−po−e
t

which requires po is small enough, Π1.1(n, po, pi) is increasing in po, so v−pi

t
≤

1
2n

<
v−po−e

t
is dominated by 1

2n
≥ v−po−e

t
. Thus, the optimal strategy can only be

supported by 1
2n

≥ v−po−e
t

in Case 1.1.
In Case 1.2, depending on n, the profit function becomes

Π1.2(n, po, pi)

= (po − c)αμ + (pi − c)(1 − α)μ − sn, if 1
2n

<
v−pi

t
;

= (po − c)αμ + (pi − c)(1 − α)μ
( v−pi

t

)
2n − sn, if v−pi

t
≤ 1

2n
<

v−po

t
;

= (po − c)αμ
( v−po

t

)
2n + (pi − c)(1 − α)μ

( v−pi

t

)
2n − sn,

if 1
2n

≥ v−po

t
.

If 1
2n

<
v−pi

t
which requires n is large enough, Π1.2(n, po, pi) is decreasing in n,

so 1
2n

<
v−pi

t
is dominated by v−pi

t
≤ 1

2n
<

v−po

t
. If v−pi

t
≤ 1

2n
<

v−po

t
which

requires po is small enough, Π1.2(n, po, pi) is increasing in po, so v−pi

t
≤ 1

2n
<

v−po

t
is dominated by 1

2n
≥ v−po

t
. Thus, the optimal strategy can only be supported

by 1
2n

≥ v−po

t
in Case 1.2.

In Case 1.3, depending on n, the profit function becomes

Π1.3(n, po, pi) =
⎧
⎨

⎩
(pi − c)μ − sn if 1

2n
<

v−pi

t
,

(pi − c)μ
( v−pi

t

)
2n − sn if 1

2n
≥ v−pi

t
.
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If 1
2n

<
v−pi

t
which requires n is large enough, Π1.3(n, po, pi) is decreasing in n,

so the optimal strategy can only be supported by 1
2n

≥ v−pi

t
in Case 1.3. Moreover,

for any (n, po, pi) in Case 1.3 such that 1
2n

≥ v−pi

t
, we can pick (n̂, p̂o, p̂i) =

(n, pi, pi) which is in Case 1.2 and yields Π1.2(n̂, p̂o, p̂i) = Π1.3(n, po, pi). Thus,
Case 1.3 is dominated by Case 1.2, and hence the optimal strategy can only be
supported by Case 1.1 with 1

2n
≥ v−po−e

t
or Case 1.2 with 1

2n
≥ v−po

t
.

We now optimize n. In Case 1.1, Π1.1(n, po, pi) is linear in n for 1
2n

≥ v−po

t

and for v−po−e
t

≤ 1
2n

<
v−po

t
, so the optimal n is either n∗(po, pi) = t

2(v−po)
or

n∗(po, pi) = t
2(v−po−e)

. With n∗(po, pi) = t
2(v−po)

, the profit function reduces to

Π1.1.1(po, pi) = (po − c)

[
αμ + βμ

(
v − po − e

v − po

)]

+ (pi − c)(1 − α − β)μ

(
v − pi

v − po

)
− st

2(v − po)
. (7.1)

With n∗(po, pi) = t
2(v−po−e)

, the profit function reduces to

Π1.1.2(po, pi) = (po − c)(α + β)μ + (pi − c)(1 − α − β)μ

(
v − pi

v − po − e

)

− st

2(v − po − e)
. (7.2)

Note that without loss of generality, we ignore the possibility of n∗(po, pi) = 0,
in which case the profit is zero, because the optimal profit is guaranteed to be non-
negative. In Case 1.2, Π1.2(n, po, pi) is linear in n for 1

2n
≥ v−po

t
, so the optimal n

is n∗(po, pi) = t
2(v−po)

which reduces the profit function to

Π1.2(po, pi) = (po − c)αμ + (pi − c)(1 − α)μ

(
v − pi

v − po

)
− st

2(v − po)
. (7.3)

Next, we optimize pi . We only need to consider Π1.1.1(po, pi), Π1.1.2(po, pi)

and Π1.2(po, pi). First, consider Π1.1.1(po, pi). Taking derivative of (7.1) with
respect to pi yields ∂Π1.1.1

∂pi
= (1 − α − β)μ

( v+c−2pi

v−po

)
. Thus, Π1.1.1(po, pi) is

concave in pi and solving the first-order condition yields pi = v+c
2 . Since Case

1.1 requires pi − po ≥ e, the optimal pi is

p∗
i (po) =

{
v+c

2 for po < v+c
2 − e,

po + e for po ≥ v+c
2 − e.

With pi = p∗
i (po), Π1.1.1(po, pi) reduces to
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Π1.1.1(po)

= (po − c)
[
αμ + βμ

( v−po−e
v−po

)] + (1 − α − β)μ
(

v−c
2

)2 1
v−po

− st
2(v−po)

,

for po < v+c
2 − e; (7.4)

= (po − c)
[
αμ + βμ

( v−po−e
v−po

)] + (po + e − c)(1 − α − β)μ
( v−po−e

v−po

) − st
2(v−po)

,

for po ≥ v+c
2 − e. (7.5)

Second, consider Π1.1.2(po, pi). Following similar analysis for Π1.1.1(po, pi),
we can obtain from (7.2) that for Π1.1.2(po, pi), the optimal pi is same as p∗

i (po)

for Π1.1.1(po, pi), and Π1.1.2(po, pi) is reduced to

Π1.1.2(po)

= (po − c)(α + β)μ + (1 − α − β)μ
(

v−c
2

)2 1
v−po−e

− st
2(v−po−e)

,

for po < v+c
2 − e; (7.6)

= (po − c)(α + β)μ + (po + e − c)(1 − α − β)μ − st
2(v−po)

,

for po ≥ v+c
2 − e. (7.7)

Third, consider Π1.2(po, pi). From (7.3) it is easy to see that Π1.2(po, pi) is
concave in pi and the first-order condition yields pi = v+c

2 . Since Case 1.2 requires
0 ≤ pi − po < e, the optimal pi is

p∗
i (po) =

⎧
⎪⎪⎨

⎪⎪⎩

po + e for po < v+c
2 − e,

v+c
2 for v+c

2 − e ≤ po < v+c
2 ,

po for po ≥ v+c
2 .

With pi = p∗
i (po), Π1.2(po, pi) reduces to

Π1.2(po)

= (po − c)αμ + (po + e − c)(1 − α)μ
( v−po−e

v−po

) − st
2(v−po)

,

for po < v+c
2 − e; (7.8)

= (po − c)αμ + (1 − α)μ
(

v−c
2

)2 1
v−po

− st
2(v−po)

,

for v+c
2 − e ≤ po < v+c

2 ; (7.9)

= (po − c)μ − st
2(v−po)

, for po ≥ v+c
2 . (7.10)

Next, we optimize po and obtain Π∗
1.1.1, Π∗

1.1.2 and Π∗
1.2. By comparing Π∗

1.1.1,
Π∗

1.1.2 and Π∗
1.2, we will obtain which subcase supports the optimal strategy.
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First, consider Π1.1.1(po). For v+c
2 − e ≤ po < v+c

2 , from (7.5) we have

Π1.1.1(po) < (po − c)αμ + (po + e − c)(1 − α)μ

(
v − po − e

v − po

)
− st

2(v − po)

≤ (po − c)αμ + (1 − α)μ

(
v − c

2

)2 1

v − po

− st

2(v − po)
= Π1.2(po),

where the first inequality is straightforward and the second inequality follows from
the fact that (po+e−c)(v−po−e) is maximized at po = v+c

2 −e and its maximum

value is
(

v−c
2

)2. Moreover, for po ≥ v+c
2 , from (7.5) we have

Π1.1.1(po) < (po − c)(α + β)μ + (po + e − c)(1 − α − β)μ

(
v − po − e

v − po

)

− st

2(v − po)

< (po − c)(α + β)μ + (po − c)(1 − α − β)μ − st

2(v − po)

= (po − c)μ − st

2(v − po)
= Π1.2(po),

where the first inequality is straightforward and the second inequality follows from
the fact that (po+e−c)(v−po−e) is decreasing in w for po ≥ v+c

2 so (po+e − c)·
(v − po − e) < (po − c)(v − po). Thus, for po ≥ v+c

2 − e, Π1.1.1(po) < Π1.2(po).
Now, consider po < v+c

2 − e. Taking derivative of (7.4) with respect to po yields

∂Π1.1.1

∂po

= (α + β)μ + 1

(v − po)2

[
− βμ(v−c)e+ (1−α−β)μ

(
v − c

2

)2

− st

2

]
.

If −βμ(v−c)e+ (1−α−β)μ
(

v−c
2

)2 − st
2 ≥ 0, then ∂Π1.1.1

∂po
> 0 for po < v+c

2 −e,

so for Π1.1.1(po), the optimal po is achieved in po ≥ v+c
2 − e, and hence we must

have Π∗
1.1.1 < Π∗

1.2. If −βμ(v − c)e + (1 − α − β)μ
(

v−c
2

)2 − st
2 < 0, then ∂Π1.1.1

∂po

is decreasing in po, so Π1.1.1(po) is concave in po for po < v+c
2 − e. The derivative

at po = v+c
2 − e is

∂−Π1.1.1

∂po

∣∣∣∣
po=(v+c)/2−e

= 1

((v − c)/2 + e)2

[
(α+β)μ

(
v − c

2
+ e

)2

−βμ(v − c)e

+ (1 − α − β)μ

(
v − c

2

)2

− st

2

]
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= 1

((v − c)/2 + e)2

[

μ

(
v − c

2

)2

+ αμ(v − c)e + (α + β)μe2 − st

2

]

≥ 1

((v − c)/2 + e)2

[
αμ(v − c)e + (α + β)μe2

]
> 0,

where the inequality follows from the profitability assumption that (v − c)μ ≥√
2stμ. Since Π1.1.1(po) is concave in po for po < v−c

2 − e, we then have ∂Π1.1.1
∂po

>

0 for po < v−c
2 − e, which again indicates Π∗

1.1.1 < Π∗
1.2.

Second, consider Π1.1.2(po). For po ≥ v+c
2 − e, the derivative of (7.7) with

respect to po is ∂Π1.1.2
∂po

= μ − st
2(v−po−e)2 which is decreasing in po, so Π1.1.2(po)

is concave in po for po ≥ v+c
2 − e. At po = v+c

2 − e, ∂+Π1.1.2
∂po

∣∣
po=(v+c)/2−e

=
μ− 2st

(v−c)2 ≥ 0. Moreover, for po < v+c
2 −e, the derivative of (7.6) with respect to po

is ∂Π1.1.2
∂po

= (α+β)μ+ 1
(v−po−e)2

[
(1−α−β)μ

(
v−c

2

)2− st
2

]
. If (1−α−β)μ

(
v−c

2

)2−
st
2 ≥ 0, then ∂Π1.1.2

∂po
> 0 for po < v+c

2 − e. If (1 − α − β)μ
(

v−c
2

)2 − st
2 < 0, then

∂Π1.1.2
∂po

is decreasing in po. Then, since ∂−Π1.1.2
∂po

∣∣
po=(v+c)/2−e

= μ − 2st
(v−c)2 ≥ 0,

we have ∂Π1.1.2
∂po

> 0 for po < v+c
2 − e. Thus, we conclude that the optimal po is

achieved in po ≥ v+c
2 −e and the first-order condition yields p∗

o = v−e−√
st/(2μ).

Correspondingly, Π∗
1.1.2 = (v − c)μ − (α + β)μe − √

2stμ.
Third, consider Π1.2(po). For po ≥ v+c

2 , the derivative of (7.10) with respect to

po is ∂Π1.2
∂po

= μ − st
2(v−po)2 which is decreasing in po, so Π1.2(po) is concave in

po for po ≥ v+c
2 . Moreover, ∂+Π1.2

∂po

∣∣
po=(v+c)/2 = μ − 2st

(v−c)2 ≥ 0. For v+c
2 − e ≤

po < v+c
2 , the derivative of (7.9) with respect to po is ∂Π1.2

∂po
= αμ + 1

(v−po)2 ·
[
(1 − α)μ

(
v−c

2

)2 − st
2

]
. If (1−α)μ

(
v−c

2

)2 − st
2 ≥ 0, then ∂Π1.2

∂po
> 0 for v+c

2 − e ≤
po < v+c

2 . If (1−α)μ
(

v−c
2

)2− st
2 < 0, then since ∂−Π1.2

∂po

∣
∣
po=(v+c)/2 = μ− 2st

(v−c)2 ≥
0, we have ∂Π1.2

∂po
> 0 for v+c

2 − e ≤ po < v+c
2 . Thus, v+c

2 − e ≤ po < v+c
2 is

dominated by po ≥ v+c
2 . Finally, for po < v+c

2 − e, taking derivatives of (7.8)

yields ∂Π1.2
∂po

= αμ + (1−α)μ

(v−po)2

[
(v − po − e)(v − po) − (po + e − c)e − st

2(v−po)2

]
,

and ∂2Π1.2
∂p2

o
= − 2(1−α)μe(v−c+e)

(v−po)3 − st
(v−po)3 < 0. So, Π1.2(po) is concave in po

for po < v+c
2 − e. Moreover, at po = v+c

2 − e, ∂−Π1.2
∂po

∣∣
po=(v+c)/2−e

= αμ +
1

((v−c)/2+e)2 · [(1 − α)μ
(

v−c
2

)2 − st
2

] = .
∂+Π1.2

∂po

∣∣
po=(v+c)/2−e

> 0. Note that we

have shown that ∂Π1.2
∂po

> 0 for v+c
2 − e ≤ po < v+c

2 . Therefore, we conclude that

the optimal po is achieved in po ≥ v+c
2 and the first-order condition yields p∗

o =
v −√

st/(2μ). Correspondingly, Π∗
1.2 = (v − c)μ−√

2stμ > Π∗
1.1.2. We have also

shown that Π∗
1.1.1 < Π∗

1.2. Therefore, the optimal strategy is achieved in Case 1.2
and the optimal profit is Π∗ = (v−c)μ−√

2stμ. Tracing back our analysis for Case
1.2, we obtain that p∗

o = v − √
st/(2μ), p∗

i = p∗
o , and n∗ = t

2(v−p∗
o)

= √
μt/(2s).
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Moreover, under the optimal strategy, all Type I customers purchase online, all Type
II and Type III customers purchase in-store. The proof is complete. �

Proof of Proposition 7.2

To analyze the profit function and derive the optimal strategy, we define five
subcases in Case 2: Case 2.1 (pi − po ≤ 0 and po > v − e), Case 2.2 (pi − po ≤ 0
and po ≤ v−e), Case 2.3 (pi −po > 0 and po > v−e), Case 2.4 (0 < pi −po < e

and po ≤ v − e), Case 2.5 (pi − po ≥ e and po ≤ v − e).
In Case 2.1, depending on n, the profit function becomes

Π2.1(n, po, pi)

= (pi − c)μ − sn − k, if 1
2n

<
po−pi

t ;

= (po − c)αμ
(

1
2n

− po−pi
t

)
2n + (pi − c)

[
αμ

(
po−pi

t

)
2n + (1 − α)μ

]
− sn − k,

if po−pi
t ≤ 1

2n
<

v−pi
t ;

= (po − c)αμ
(

1
2n

− po−pi
t

)
2n + (pi − c)

[
αμ

(
po−pi

t

)
+ (1 − α)μ

(
v−pi

t

)]
2n

− sn − k, if 1
2n

≥ v−pi
t .

If 1
2n

<
po−pi

t
which requires n is large enough, Π(n, po, pi) is decreasing in n, so

1
2n

<
po−pi

t
is dominated by po−pi

t
≤ 1

2n
<

v−pi

t
. If po−pi

t
≤ 1

2n
<

v−pi

t
, since

∂Π
∂n

= − 2αμ(po−pi)
2

t
− s < 0, po−pi

t
≤ 1

2n
<

v−pi

t
is dominated by 1

2n
≥ v−pi

t
.

Thus, the optimal strategy can only be supported by 1
2n

≥ v−pi

t
in Case 2.1.

In Case 2.2, depending on n, the profit function becomes

Π2.2(n, po, pi)

= (pi − c)μ − sn − k, if 1
2n

<
po−pi

t ;

= (po − c)αμ
(

1
2n

− po−pi
t

)
2n + (pi − c)

[
αμ

(
po−pi

t

)
2n + (1 − α)μ

]
− sn − k,

if po−pi
t ≤ 1

2n
<

po−pi+e
t ;

= (po − c)
[
αμ

(
1

2n
− po−pi

t

)
+ βμ

(
1

2n
− po−pi+e

t

)]
2n

+ (pi − c)
[
αμ

(
po−pi

t

)
2n + βμ

(
po−pi+e

t

)
2n + (1 − α − β)μ

]
− sn − k,

if po−pi+e
t ≤ 1

2n
<

v−pi
t ;

= (po − c)
[
αμ

(
1

2n
− po−pi

t

)
+ βμ

(
1

2n
− po−pi+e

t

)]
2n,
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+ (pi − c)
[
αμ

(
po−pi

t

)
+ βμ

(
po−pi+e

t

)
+ (1 − α − β)μ

(
v−pi

t

)]
2n − sn − k,

if 1
2n

≥ v−pi
t .

It can be easily shown that Π(n, po, pi) is decreasing in n if 1
2n

<
v−pi

t
. Thus, the

optimal strategy can only be supported by 1
2n

≥ v−pi

t
in Case 2.2.

In Case 2.3, depending on n, the profit function becomes

Π2.3(n, po, pi)

=
{

(po − c)αμ + (pi − c)(1 − α)μ − sn − k, if 1
2n

<
v−pi

t
;

(po − c)αμ + (pi − c)(1 − α)μ
( v−pi

t

)
2n − sn − k, if 1

2n
≥ v−pi

t
.

Since Π(n, po, pi) is decreasing in n if 1
2n

<
v−pi

t
, the optimal strategy can only

be supported by 1
2n

≥ v−pi

t
in Case 2.3.

In Case 2.4, depending on n, the profit function becomes

Π2.4(n, po, pi)

= (po − c)αμ + (pi − c)(1 − α)μ − sn − k, if 1
2n

<
po−pi+e

t
;

= (po − c)
[
αμ + βμ

(
1

2n
− po−pi+e

t

)
2n
]

+ (pi − c)
[
βμ

(po−pi+e
t

)
2n + (1 − α − β)μ

] − sn − k,

if po−pi+e
t

≤ 1
2n

<
v−pi

t
;

= (po − c)
[
αμ + βμ

(
1

2n
− po−pi+e

t

)
2n
]

+ (pi − c)
[
βμ

(po−pi+e
t

) + (1 − α − β)μ
( v−pi

t

)]
2n − sn − k,

if 1
2n

≥ v−pi

t
.

Since Π(n, po, pi) is decreasing in n if 1
2n

<
po−pi+e

t
, the optimal strategy can

only be supported by 1
2n

≥ po−pi+e
t

in Case 2.4.
In Case 2.5, depending on n, the profit function becomes

Π2.5(n, po, pi)

=
⎧
⎨

⎩
(po − c)(α + β)μ + (pi − c)(1 − α − β)μ − sn − k, if 1

2n
<

v−pi

t
;

(po − c)(α + β)μ + (pi − c)(1 − α − β)μ
( v−pi

t

)
2n − sn − k, if 1

2n
≥ v−pi

t
.

Since Π(n, po, pi) is decreasing in n if 1
2n

<
v−pi

t
, the optimal strategy can only

be supported by 1
2n

≥ v−pi

t
in Case 2.5.
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Now we optimize n. Note that Π(n, po, pi) is piecewise linear in n in all
subcases. In Case 2.1, n†(po, pi) = t

2(v−pi)
, and the profit function reduces to

Π2.1(po, pi) = (po − c)αμ

(
v − po

v − pi

)
+ (pi − c)

[
αμ

(
po − pi

v − pi

)
+ (1 − α)μ

]

− st

2(v − pi)
− k. (7.11)

In Case 2.2, n†(po, pi) = t
2(v−pi)

, and the profit function reduces to

Π2.2(po, pi) = (po − c)

[
αμ

(
v − po

v − pi

)
+ βμ

(
v − po − e

v − pi

)]

+ (pi − c)

[
αμ

(
po − pi

v − pi

)
+ βμ

(
po − pi + e

v − pi

)
+ (1 − α − β)μ

]

− st

2(v − pi)
− k. (7.12)

In Case 2.3, n†(po, pi) = t
2(v−pi)

, and the profit function reduces to Π2.3(po, pi) =
(po − c)αμ + (pi − c)(1 − α)μ − st

2(v−pi)
− k. Since Π2.3(po, pi) is increasing in

po, Case 2.3 is dominated by Case 2.1. In Case 2.4, the optimal n is either t
2(v−pi)

or t
2(po−pi+e)

. With n = t
2(v−pi)

, the profit function reduces to

Π2.4(po, pi) = (po − c)

[
αμ + βμ

(
v − po − e

v − pi

)]

+ (pi − c)

[
βμ

(
po − pi + e

v − pi

)
+ (1 − α − β)μ

]

− st

2(v − pi)
− k. (7.13)

With n = t
2(po−pi+e)

, the profit function reduces to Π2.4(po, pi) = (po − c)αμ +
(pi −c)(1−α)μ− st

2(po−pi+e)
−k which is increasing in po, so with n = t

2(po−pi+e)
,

Case 2.4 is dominated by either Case 2.2 or Case 2.3. Thus, the optimal strategy
can only be supported by n†(po, pi) = t

2(v−pi)
in Case 2.4. Finally, in Case 2.5,

n†(po, pi) = t
2(v−pi)

, and the profit function reduces to Π2.5(po, pi) = (po − c) ·
(α + β)μ + (pi − c)(1 − α − β)μ − st

2(v−pi)
− k. Since Π2.5(po, pi) is increasing

in po, Case 2.5 is dominated by either Case 2.3 or Case 2.4.
So far, we have seen that Cases 2.3 and 2.5 are not optimal. Next, we optimize

po by considering Π2.1(po, pi), Π2.2(po, pi), and Π2.4(po, pi). First, consider
Case 2.4. Taking derivative of (7.13) with respect to po yields ∂Π2.4

∂po
= αμ +

βμ
( v−2po+pi−e

v−pi

)
which is decreasing in po, so Π2.4(po, pi) is concave in po.
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For pi ≤ v − e, Case 2.4 intersects with Case 2.2 at po = pi . Then, since
∂−Π2.4

∂po

∣∣
po=pi

= αμ + βμ
( v−pi−e

v−pi

)
> 0, Case 2.4 is dominated by Case 2.2.

For pi > v − e, Case 2.4 intersects with Case 2.3 at po = v − e. Then, since
∂−Π2.4

∂po

∣
∣
po=v−e

= αμ + βμ
(−v+e+pi

v−pi

)
> 0, Case 2.4 is dominated by Case 2.3.

Thus, Case 2.4 is not optimal.
Second, consider Case 2.2. Taking derivative of (7.12) with respect to po

yields ∂Π2.2
∂po

= αμ
( v−2po+pi

v−pi

) + βμ
( v−2po+pi−e

v−pi

)
which is decreasing in po,

so Π2.2(po, pi) is concave in po. Solving the first-order condition yields po =
v+pi

2 − βe
2(α+β)

. Recall that Case 2.2 requires pi ≤ po ≤ v − e. Also, note

that Case 2.2 is valid only for pi ≤ v − e. Then, we have v+pi

2 − βe
2(α+β)

>
v+pi

2 − e
2 = v−e−pi

2 + pi ≥ pi . Moreover, v+pi

2 − βe
2(α+β)

< v − e is equivalent to

pi < v−e− αe
α+β

. Thus, for pi ≥ v−e− αe
α+β

, p†
o(pi) = v−e. For pi < v−e− αe

α+β
,

p
†
o(pi) = v+pi

2 − βe
2(α+β)

, and the profit function reduces to

Π2.2(pi) = (pi −c)μ+ (α + β)μ(v − pi)

4
− βμe

2
+
[

β2μe2

4(α + β)
− st

2

]
1

v − pi

−k.

(7.14)
Third, consider Case 2.1. Taking derivative of (7.11) with respect to po yields

∂Π2.1
∂po

= αμ
( v−2po+pi

v−pi

)
which is decreasing in po, so Π2.1(po, pi) is concave in po.

Solving the first-order condition yields po = v+pi

2 . Recall that Case 2.1 requires
po > v − e. v+pi

2 > v − e is equivalent to pi > v − 2e. Thus, for pi ≤ v − 2e,

p
†
o(pi) = v − e. For pi > v − 2e, p

†
o(pi) = v+pi

2 , and the profit function reduces to

Π2.1(pi) = (pi − c)μ + αμ(v − pi)

4
− st

2(v − pi)
− k. (7.15)

In optimizing po, we know that the optimal strategy can only be achieved in
Case 2.1 or Case 2.2. Moreover, for pi ≤ v−2e, Case 2.1 is dominated by Case 2.2.
For pi ≥ v − e − αe

α+β
, Case 2.2 is dominated by Case 2.1. Note that v − 2e < v − e

− αe
α+β

.
Next, we optimize pi and characterize the optimal strategy. First, consider

Case 2.1. Taking derivative of (7.15) with respect to pi yields dΠ2.1
dpi

= (
1 − α

4

)
μ −

st
2(v−pi)

2 . It is decreasing in pi , so Π2.1(pi) is concave in pi . If dΠ2.1
dpi

∣∣
pi=v−2e

=
(
1 − α

4

)
μ − st

8e2 > 0, or equivalently, e >
√

st
8(1−α/4)μ

=: e1, the optimal pi

in Case 2.1 is given by the first-order condition. Solving the first-order condition

yields p
†
i = v −

√
st

2(1−α/4)μ
. Correspondingly,

Π
†
2.1 = (v − c)μ −

√
2
(

1 − α

4

)
stμ − k. (7.16)

On the other hand, if e ≤ e1, Case 2.1 is dominated by Case 2.2.
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Second, consider Case 2.2. Taking derivative of (7.14) with respect to pi yields

dΠ2.2

dpi

=
(

1 − α + β

4

)
μ +

[
β2μe2

4(α + β)
− st

2

]
1

(v − pi)2 .

If β2μe2

4(α+β)
− st

2 > 0, dΠ2.2
dpi

> 0, so Case 2.2 is dominated by Case 2.1. If β2μe2

4(α+β)
− st

2 ≤
0, Π2.2(pi) is concave in pi . Then, if

dΠ2.2

dpi

∣
∣
∣
∣
pi=v−e−αe/(α+β)

=
(

1 − α + β

4

)
μ +

[
β2μe2

4(α + β)
− st

2

](
α + β

2α + β

)2 1

e2
< 0,

(7.17)
the optimal pi in Case 2.2 is given by the first-order condition. Solving the first-

order condition yields p
†
i = v −

√[
st
2 − β2μe2

4(α+β)

]
/
[(

1 − α+β
4

)
μ
]
. Correspondingly,

Π
†
2.2 = (v − c)μ −

√(
1 − α + β

4

)(
2st − β2μe2

α + β

)
μ − βμe

2
− k. (7.18)

Note that (7.17) is equivalent to e < (α + β)
√

2st

[(4−α−β)(2α+β)2+β2(α+β)]μ =: e2.

Thus, if e < e2, p
†
i and Π

†
2.2 are given above. On the other hand, if v ≥ e2, Case 2.2

is dominated by Case 2.1.
We have shown that if e1 < e < e2, the optimal pi is given by the first-order

condition in both Cases 2.1 and 2.2, and the profits are given by (7.16) and (7.18),
respectively. From (7.16) and (7.18), we know Π

†
2.1 ≥ Π

†
2.2 is equivalent to

√
2
(

1 − α

4

)
stμ − βμe

2
≤
√(

1 − α + β

4

)(
2st − β2μe2

α + β

)
μ. (7.19)

Note that e < e2 implies β2μe2

4(α+β)
− st

2 ≤ 0 which in turn implies
√

2(1 − α/4)stμ−
βμe

2 > 0. Taking square on both sides of (7.19) and simplifying the resulting
inequality yields

βμ

α + β
· e2 −

√
2
(

1 − α

4

)
stμ · e + st

2
≤ 0. (7.20)

Solving (7.20) yields e3 ≤ e ≤ e4, where

e3 =
√

st
√

2
(
1 − α

4

)
μ +

√
2
(
1 − α

4

)
μ − 2βμ

α+β

, and
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e4 =
√

st
√

2
(
1 − α

4

)
μ −

√
2
(
1 − α

4

)
μ − 2βμ

α+β

.

To determine when Case 2.1 or Case 2.2 is optimal, we show that the following
three conditions hold: (1) e3 < e2, (2) e3 > e1, (3) e4 > e2. Given these conditions,
Case 2.1 is optimal if and only if e ≥ e3 = ē, and Case 2.2 is optimal if and only if
e < e3 = ē. First, e3 < e2 is equivalent to

√
(4 − α − β)(2α + β)2 + β2(α + β)

<
√

α + β
[√

(α + β)(4 − α) + √
α(4 − α − β)

]
. (7.21)

Taking square on both sides of (7.21) and rearranging terms yields

α
[
1 + 2α − (1 − α − β)2

]
< (α + β)

√
(α + β)(4 − α)α(4 − α − β). (7.22)

Then, taking square on both sides of (7.22) and rearranging terms yields 4αβ·[−2α2·
(1 − α) − (5α2 + 4αβ + β2)(1 − β) − α2 − 7αβ − 3β2] < 0 which is true. Second,
e3 > e1 holds because e3 > st

2
√

2(1−α/4)stμ
= e1. Third, to show e4 > e2, it suffices

to show α+β
2βμ

√
2
(
1 − α

4

)
stμ > (α +β)

√
2st

[(4−α−β)(2α+β)2+β2(α+β)]μ , which can be

simplified to

√
4 − α ·

√
(4 − α − β)(2α + β)2 + β2(α + β) > 4β. (7.23)

Taking square on both sides of (7.23) and rearranging terms yields 4α[α(α + β)2 +
7α2 + (8α + 11β)(1 − α) + (α + 5β)(1 − β)] > 0 which is true.

Therefore, we have shown that Case 2.1 is optimal if e ≥ ē and Case 2.2 is
optimal if e < ē. When Case 2.1 is optimal, tracing back our analysis for Case

2.1, we obtain that p
†
o = v+p

†
i

2 and n† = t

2(v−p
†
i )

which are the ones shown in

Proposition 7.2(i). It is easy to see that p
†
o > p

†
i . Under the optimal strategy, Type

I customers purchase online if
p

†
o−p

†
i

t
≤ x ≤ 1

2n† and purchase in-store if 0 ≤ x <

p
†
o−p

†
i

t
, all Types II and III customers purchase in-store.

Moreover, when Case 2.2 is optimal, tracing back our analysis for Case 2.2, we

obtain that p
†
o = v+p

†
i

2 − βe
2(α+β)

and n† = t

2(v−p
†
i )

which are the ones shown in

Proposition 7.2(ii). p
†
o > p

†
i can be simplified to

e <
α + β

β

√
st

2μ
. (7.24)
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To show (7.24) is true if e < ē, it suffices to show ē <
α+β

β

√
st
2μ

. Then, since

ē <
√

st
2(1−α/4)μ

, it suffices to show

√
st

2
(
1 − α

4

)
μ

<
α + β

β

√
st

2μ
. (7.25)

Taking square on both sides of (7.25) and simplifying the resulting inequality yields
α[−(α+β)2+4α+8β] > 0 which is true. Thus, p†

o > p
†
i . Finally, under the optimal

strategy, Type I customers purchase online if
p

†
o−p

†
i

t
≤ x ≤ 1

2n† and purchase in-

store if 0 ≤ x <
p

†
o−p

†
i

t
, Type II customers purchase online if

p
†
o−p

†
i +e

t
≤ x ≤ 1

2n†

and purchase in-store if 0 ≤ x <
p

†
o−p

†
i +e

t
, and all Type III customers purchase

in-store. The proof is complete. �

Proof of Proposition 7.3

(i) It is easy to see n† < n∗ if e ≥ ē. If e < ē, n† < n∗ can be simplified to

e <
α + β

β

√
st

2μ
(7.26)

which is same as (7.24). Thus, n† < n∗.
(ii) It is easy to see p

†
o > p∗

o if e ≥ ē. If e < ē, p
†
o > p∗

o is equivalent to

(α + β)

√
stμ

2
− (α + β)μ

2

√√√√
st
2 − β2μe2

4(α+β)
(
1 − α+β

4

)
μ

>
βμe

2
. (7.27)

From (7.19), we know that e < ē(= e3) implies

√
2
(

1 − α

4

)
stμ −

√(
1 − α + β

4

)(
2st − β2μe2

α + β

)
μ >

βμe

2
. (7.28)

For (7.28) to sufficiently imply (7.27), we need the left-hand side of (7.27)
to be larger than the left-hand side of (7.28), which can be simplified to the
following:
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(√
4 − α − α − β

)
√(

1 − α + β

4

)
st

2
< (2 − α − β)

√
st

2
− β2μe2

4(α + β)
.

(7.29)
First, it is easy to see

√
4 − α − α − β < 2 − α − β. Second, (7.26) implies√(

1 − α+β
4

)
st
2 <

√
st
2 − β2μe2

4(α+β)
. Thus, p

†
o > p∗

o .

(iii) It is easy to see p
†
i < p∗

i if e ≥ ē. If e < ē, p†
i < p∗

i can be simplified to (7.26)

which we have shown is true. Thus, p
†
i < p∗

i .
(iv) Since the firm sells to all customers under the optimal strategy in both cases,

it suffices to consider the online demand. It is easy to see that if e ≥ ē, the
firm’s online demand is lower in Case 2 than in Case 1. If e < ē, the condition
for the online demand to be lower in Case 2 than in Case 1 is α >

α+β
2 −

βe

√(
1 − α+β

4

)
μ/

[
2st − β2μe2

α+β

]
which is equivalent to

(β − α)

√
st

2
− β2μe2

4(α + β)
< βe

√(
1 − α + β

4

)
μ. (7.30)

If β < α, (7.30) holds trivially. If β ≥ α, taking square on both sides of (7.30)
and simplifying the resulting inequality yields

e >
β − α

β

√
(α + β)st

2(α + β − αβ)μ
. (7.31)

Note that if β < α, the right-hand side of (7.31) is negative and hence (7.31)
holds. Thus, (7.30) holds if and only if e > e. Finally, since (7.30) holds when
e = ē, we know e < ē.

(v) By comparing Π∗ and Π†, it is easy to see that Π† ≥ Π∗ if and only if k ≤ k̄.
If e ≥ ē, it is easy to see that k̄ > 0. If e < ē, from (7.19) we know that
√

2
(
1 − α

4

)
stμ −

√(
1 − α+β

4

) (
2st − β2μe2

α+β

)
μ − βμe

2 > 0, which implies

k̄ > 0.
(vi) If e ≥ ē, Π† − Π∗ = √

2stμ
(

1 −
√

1 − α
4

)
− k which is increasing in t and

s. If e < ē, Π† − Π∗ = √
2stμ −

√(
1 − α+β

4

) (
2st − β2μe2

α+β

)
μ − βμe

2 − e.

Then,

∂(Π† − Π∗)
∂t

= s

t

[√
μt

2s
−
√

(1 − (α + β)/4)μt

2s − β2μe2/[(α + β)t]

]

= s

t
(n∗ − n†) > 0.

Moreover, since Π† − Π∗ is symmetric in t and s, ∂(Π†−Π∗)
∂s

> 0. �
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Chapter 8
Price-Matching Strategy: Implications
of Consumer Behavior and Channel
Structure

Arcan Nalca, Saibal Ray, and Tamer Boyaci

Abstract Price-matching has become a ubiquitous strategy for retailers both in
product and service industries, especially with the growing ease of checking prices
online. With this strategy, retailers promise not to be undersold and match competi-
tor’s lower price (if any). Price-sensitive consumers tend to be happy with this since
they potentially can get the lowest price at their “favourite” retailer. A relatively
under-researched topic in this context is the fact that this price convenience normally
comes with a number of conditions. We analyze two of the most common ones—
the product must be available at the lower priced retailer (availability condition)
and the price-match extends only to a competing retailer and not to a direct-to-
consumer manufacturer (channel condition)—and investigate their implications for
the channel and consumers.

We show that if consumers consider the fact that they might be denied the price-
matching benefit based on verification of availability at the competitor’s location
while making a purchase decision, then they will benefit from a lower price by
increasing the competition between the retailers; on the other hand, not considering
this fact would allow the retailers to price discriminate and might harm consumers.

As regards channel structure, we prove that if the upstream partner has the power
to set the wholesale price, then it does not make sense for a retail channel to price
match with a manufacturer selling directly to consumers. But, in sectors where there
are dominant retailers who have a say in determination of the wholesale price,
price-matching can be an equilibrium strategy for the retail channel, even when
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manufacturers are directly selling to consumers. Furthermore, price-matching is also
the equilibrium strategy for upstream manufacturers as it redirects demand from the
retail to their direct channel.

Keywords Price-matching guarantees · Product availability · Inventory ·
Demand uncertainty · dual channel

8.1 Introduction

Price-matching guarantees (PMGs) are offers by which retailers promise to match
any lower price offered by the competition for the same merchandise. PMGs are
quite popular in many sectors, such as consumer electronics (Best Buy, Circuit City,
Gateway, Dell), home and office appliances (Home Depot, Staples), leisure and
travel (Orbitz), and even in insurance (Bank of Ireland). Some retailers will match
the price even if they do not advertise having such a policy. In fact, local stores
will often match the price of direct competition upon request as a matter of standard
procedure (pcguide.com). Arbatskaya et al. (2004) report on the variety of PMGs for
more than 50 categories of products and services.1,2 Many online discussion groups,
forums, and blogs encourage consumers to utilize PMGs and provide guidelines to
ensure that their price-match requests are fruitful (e.g., redflagdeals.com).

Offering a PMG shows the persistence of a retailer in being competitive, yet does
not necessarily guarantee the “best deal” for the customers. Typically, customers
are asked to present proof of a lower price (if any), and the difference is refunded.
This proof can be in the form of a weekly flyer, a newspaper advertisement, or
website information for an identical brand and model. As such, PMGs only provide
an opportunity to receive the lowest price if customers are willing and are able to
claim it.

To be able to request a price-match, customers must be aware that the retailer
is offering a PMG and know the competitors’ prices. These are not challenging
tasks, however, given the volume of information available in the online world
and social media. PMGs are storewide policies; they are not offered for particular
items but for the whole assortment of products at the store. Therefore, from a
customer’s perspective, it is relatively easy to remember if a certain store offers a
PMG (Moorthy and Zhang 2006). Moreover, considering the growing digitalization

1Firms sometimes refund more than the difference, so that they “beat” the lower price of the
competitor. For ease of exposition, however, we only consider the case where firms match the
lower price.
2In addition to competitive price-matching guarantees, there is also an alternative price guarantee,
less related to our work, that is referred to as an internal price-matching guarantee (IPM). Under
IPMs, retailers promise to refund the customer who has already purchased an item if a lower price
is offered during some pre-specified time-period. A stream of research identifies that IPMs can
facilitate collusion (Cooper 1986; Butz 1990) and mitigate the strategic purchasing behavior of
customers (Aviv et al. 2009; Lai et al. 2007; Levin et al. 2007).

redflagdeals.com
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of business processes in the retail world, obtaining and comparing prices has never
been easier for consumers. For example, a new price app called Pricerazzi, launched
in October 2017, searches more than 1000 stores over the eligibility term of a given
price-match policy. When a price drop is found, the app automatically notifies the
customer, so they can request a price-match.

Given the very low cost of price searching, a majority of customers will
potentially be informed about the prices and request a price-match when relevant.
The economics and marketing literature has examined in detail the implications
of PMGs between retail firms. One widely accepted outcome of PMGs between
retailers, when it is easy for customers to request a price-match, is tacit collusion,
i.e., the ability to maintain high prices without any formal agreement (Arbatskaya
2001; Chen 1995; Edlin 1997; Hay 1981; Logan and Lutter 1989; Salop 1986;
Zhang 1995). With a PMG in place, a firm can automatically respond to any price
reduction by rivals because its customers request a price-match instead of switching
to the lower priced firms. As such, there is no incentive to cut prices; a firm that
is matching a competitor’s price cannot be undersold. The result is that firms can
collectively increase their prices, making PMGs a seemingly enticing strategy.

However, a closer look reveals that many other factors beyond price information
play a role in the success rate of a customer’s PMG request. For instance, the
following excerpt from Best Buy Canada’s website lists the necessary conditions
that must be met for customers to be granted a price-match. A screenshot of the
website is provided in Fig. 8.1. PMGs by other retailers also come with similar
clauses.

The product you’re comparing must meet each of the following criteria to qualify
for a price beat.

1. Must have the exact same brand name and model number.
2. Must be priced in Canadian Dollars and include all environmental fees,

shipping costs, and other charges.
3. Must be sold and shipped by a retailer AND authorized dealer located within

Canada.
4. The product must be in stock, available for sale, and cannot be a limited time

offer or available only in limited quantity.
5. The product’s price must not be lower due to an advertising error, misprint,

or special sale price.

In this chapter, our goal is to shed light on how the two conditions listed in these
criteria—which are operational and channel related—affect the value proposition
of the PMGs offered by retailers. Specifically, we would like to identify how the
channel coverage (third item) and the product availability clause (fourth item) in
Best Buy’s list affect consumers and change decisions in the supply chain.

Note that the fourth item in the list requires that the product under consideration
be available for sale at the competing retailer at the time of the price-matching
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Fig. 8.1 Lowest price guarantee details from Best Buy Canada (retrieved February 20, 2018, from
https://www.bestbuy.ca/en-ca/help/lowest-price-guarantee/hc1001.aspx. Screenshot by author)

request, prior to matching the price. Obviously, Best Buy, or any other retailer
verifying availability before matching the price, is willing to sacrifice its profit
margin only if the customer has a credible alternative to purchase at a lower price.
This approach protects Best Buy against a competitor announcing a lower price for a
product to attract customers, but deliberately stocking low for that particular product
(such a strategy reduces the penalty of low profit margins, but the increased in-store
traffic may lead to higher sales of substitute products).

Verification of availability at the competing store cuts down on the number of
incidents of sales with low profit margins. At the same time, high stock-out rates
may create a scarcity effect in the market, especially in the price-matching context.
Consider a customer who asks for a price-match at her preferred store but is declined
because the product is sold out at the competing store. She has already traveled to
her preferred store and learned there that the product is sold out at the competing
store. If she is eager to obtain the product, then she may agree to purchase it at
the (high) list price even though she had not been willing to pay that price before
learning about the stock-out at the competing store.

The existence of an availability condition reveals the important role of product
availability in PMGs as the process of verifying allows retailers to take advantage
of the scarcity effect. Given that 100% of the top 20 consumer electronics retailers
offering PMGs consider the verification of availability at the competing retailer to
be a prerequisite for matching prices, the value that retailers attach to availability is
obvious.

https://www.bestbuy.ca/en-ca/help/lowest-price-guarantee/hc1001.aspx
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Another important element in the list of Best Buy’s price-matching conditions
is that the product under consideration must be sold by a retailer. Dual-channel
systems, i.e., those in which manufacturers or suppliers sell a product directly
through an integrated channel in addition to traditional retail channels are ubiquitous
in today’s economy.3 An interesting property of dual channels is that the supplier
becomes the competitor of the retailer, in addition to being a vendor. Moreover, the
two channels compete primarily on price to attract customers, in addition to service
and quality (Chen et al. 2008).

Best Buy’s price-matching policy includes other resellers of the product, but
excludes manufacturers and suppliers, meaning that their price-matching offer does
not extend to the dual channel. Nevertheless, PMGs are sometimes observed in dual
channels too. For instance, since February 2013, Air Canada has been promising
customers who book tickets on its website that they will be getting the lowest
possible fare.4 A screenshot of the website is provided in Fig. 8.2. If customers find
a lower price for the exact same Air Canada itinerary on a travel provider’s website
(e.g., expedia.ca) or through a travel agency, then the difference will be refunded.
Expedia Inc. also promises to match any lower price as a part of their “stress-free
travel” program.5

In fact, price-matching between travel agencies and suppliers such as hotels and
airlines is widely observed. Airlines such as Air Canada, Air France, American
Airlines, British Airways, Continental, Delta, United, and US Airways, and hotels
such as Choice Hotels, Hilton, Hyatt, Intercontinental Hotels Group, and Marriott
offer guarantees to match the price of online-travel-agencies (OTA), such as
Expedia, Travelocity, Priceline, Orbitz, and Hotels.com. These OTAs also promise
to match the price of airlines, hotels, and competing OTAs.

Despite their popularity in some industries, PMGs are not prevalent in all dual-
channel settings. For instance, to the best of our knowledge, in the consumer
packaged goods industry there are no incidents of price-matching between a retailer
and a supplier; suppliers do not offer a guarantee while retailers do, but they exclude
the suppliers from their coverage. We have checked the price-matching policies of
big retailers such as WalMart, Target, Staples, Loblaws, Toys R Us, Home-Depot,
Home Hardware, Rona, The Brick, Lowe’s, and Canadian Tire in the consumer
packaged goods, and Best Buy, Radio Shack, The Source, and Fry’s in consumer
electronics, among many others, and have observed that the guarantee is applicable
among retailers only.

Availability verification has both direct and indirect effects on consumers. On
the one hand, it can be seen as an extra hassle that consumers need to go through in

3In order to keep the model applicable to service industries, we henceforth use the term “supplier”
when referring to the vendor even though the term usually refers to a manufacturing firm in
consumer packaged goods and consumer electronics.
4See, for example, “Air Canada guarantees its website has lowest airfares” by Vanessa Lu, Toronto
Star, February 12, 2013.
5See the details of “What is the Best Price Guarantee?” at www.expedia.ca.

www.expedia.ca
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Fig. 8.2 Lowest price guarantee details from Air Canada (retrieved February 20, 2018,
from https://www.aircanada.com/ca/en/aco/home/plan/peace-of-mind/lowest-price-guarantee.
html. Screenshot by author)

order to request a price-match. Similarly, limiting the coverage of the PMG to other
retailers, and excluding the direct channels, also limits the use of PMGs from the
consumer’s perspective.

On the other hand, availability verification as a price-matching condition will
play a role in the profitability of retailers, and therefore will have an impact on
their pricing and inventory decisions. Similarly, the presence of a PMG between a
retailer and a manufacturer will have an impact on their channel interactions. As
such, these conditions (or limitations) for price-matching will also have indirect
repercussions on consumers by changing the nature of the interaction between
supply chain members.

Our goal in this chapter is to identify how price-matching conditions—such
as verification of availability and the extent of channel coverage (traditional ver-
sus direct channels)—change the value proposition of price-matching guarantees.

https://www.aircanada.com/ca/en/aco/home/plan/peace-of-mind/lowest-price-guarantee.html
https://www.aircanada.com/ca/en/aco/home/plan/peace-of-mind/lowest-price-guarantee.html
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Specifically, we shed light on the following two specific questions: (1) How
does availability verification as a condition of price-match affect the value of the
guarantee for consumers and retailers? (2) What market conditions produce a wider
price-matching coverage in dual channels, and does wider coverage necessarily
benefit consumers?

To address these issues, we analyze a duopoly game in a single-period setting.
Our modeling framework incorporates the horizontal and vertical differentiation
between firms, as well as the product availability at each firm.

Our analysis reveals that, despite being perceived as a hassle by consumers,
availability verification as a condition for price-matching benefits consumers as long
as they take the availability verification into consideration while making a purchase.
Specifically, if consumers take availability verification into account while deciding
which retailer to purchase from, then the availability clause increases the degree of
price competition between the retailers and, thereby, leads to lower market prices. In
contrast, if the consumers neglect the availability verification clause, then the clause
allows retailers to price discriminate against consumers.

Our analysis also reveals that the use of PMGs in a dual channel may lead to
an increase in market prices. However, the manufacturer’s PMG may benefit both
consumers and the manufacturer in the presence of a dominant retailer.

In terms of channel coverage, we show that offering a PMG is not beneficial and
it is not the equilibrium strategy in a traditional chain in which the supplier sets
the wholesale price. This is true even under conditions at which competing retail
channels (non-dual channel) would benefit from price-matching. The main intuition
is that promising to match the price of the retail channel limits the supplier’s ability
to optimally allocate the demand between the two channels. However, a shift in
pricing power toward a dominant retailer—that is, the retailer that dictates the
wholesale price—provides an explanation as to why PMGs are observed in dual
channels.

Specifically, in a retail dominant chain, the supplier has limited influence on both
the pricing of the retail channel and the demand distribution across the two channels.
Consequently, the supplier benefits from attracting customers to the direct channel
via a PMG. We show that, in a retail dominant chain, all possible outcomes (both
parties offer price-matching guarantee, neither offers, only the retailer offers, and
only the supplier offers) are possible at equilibrium, depending on the degree of
vertical and horizontal differentiation between the retail and direct channels. We also
show that, under the condition of both parties offering price-matching, the consumer
surplus is reduced compared to the no-PMG scenario. In that sense, it is possible that
retail dominance is the underlying reason that retailers and suppliers/manufacturers
include each other in their price-matching coverage and this is detrimental to
consumer welfare. In contrast, retailers’ exclusion of suppliers or manufacturers
from their price-matching guarantee coverage—as bothersome as they may be for
consumer experience—maintains a higher surplus through the elimination of tacit
collusion.
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8.2 Review of the Related Literature

There are three streams of research that relate to our work: price-matching guaran-
tees, dual channels, and retail dominance.

8.2.1 Price-Matching Guarantees

A substantial body of economics and marketing research analyzes how PMGs
affect retail price competition. The extant literature presents four perspectives on
the economical outcome that PMGs postulate: (1) tacit collusion, (2) competition
enhancing, (3) price discrimination, and (4) signal theory.

Tacit Collusion Following the seminal works of Hay (1981) and Salop (1986), the
first stream illustrates that, despite seemingly acting as a pro-competitive device,
price-matching policies actually lead to tacit collusion. Early works in this field
deal with identical retailers and assume that price search activity is costless (Edlin
1997; Sargent 1992). Consequently, all customers are informed about the prices and
purchase from the lowest priced retailer in the market (Corts 1995; Doyle 1988).
This behavior motivates retailers to engage in price competition coupled with a
PMG offer so as not to lose customers to competition. Any incentive to undercut
the price is eliminated since a retailer that is matching the price of the competitor
cannot be undersold, provided that customers are informed about prices. When all
retailers offer PMGs, there is no incentive to undercut the prices of rivals; reduced
competition then results in high prices, indeed monopoly ones.

The robustness of the tacit collusion argument has been tested under various
settings in the following works.

Belton (1987) shows that retailers continue to offer PMGs and set monopoly
prices even when they make their decisions sequentially rather than simultaneously.

Zhang (1995) shows that if retailers are allowed to choose their product location
(in a Hotelling setting), price-matching guarantee, and prices sequentially and
independently, then collusive outcomes are achieved. Interestingly, even if the price
competition is deteriorated by the PMGs, the competition on product differentiation
is still intense and there is minimal differentiation among the products in equilib-
rium.

Lin (1988) suppresses the perfect information assumption allowing customers to
engage in a search with an increasing marginal cost. In other words, the information
level of customers depends on their search level. Under this scenario, PMGs not
only allow retailers to act like a monopoly, but to also increase the amount of search
by customers.

Logan and Lutter (1989) demonstrate that in case of large cost differences
between retailers, the high-cost retailer loses interest in PMGs, and competitive
equilibrium prices prevail. Mago and Pate (2009) empirically validate this result.
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Arbatskaya et al. (2004) provide empirical evidence of high hassle costs in price-
matching policies that come from the restrictions presented in the guarantee itself.
The addition of hassle costs can have significant effects on the equilibrium pricing
strategy. Hviid and Shaffer (1999) show that hassle costs are sufficient to make
any price above marginal cost unsupportable if retailers sell identical products. The
reason is that, for any positive hassle cost, customers would strictly prefer the retailer
with the lowest price, independent of the PMG. They conclude that if hassle costs
of customers are included, any increase in equilibrium prices due to price-matching
will be small.

Although experimental studies provide support for collusive behavior in the
presence of PMGs (Dugar 2005; Fatas and Mañez 2007), empirical studies are
inconclusive. The challenge is the difficulty in estimating what each retailer would
be doing if PMGs were not allowed (Arbatskaya et al. 2004).

Hess and Gerstner (1991) are the first to empirically study the effects of PMGs.
They study the price decisions of a supermarket before and after adopting a price-
matching policy, and find that the average product price increases (slightly) after the
integration of the PMG. The follow-up empirical studies conclude that there is no
significant difference between the prices of the retailers offering PMGs as compared
to prices of the retailers not offering PMGs (Arbatskaya et al. 1999, 2006; Manez
2006).

Recent works, such as Lu and Wright (2010) and Liu (2012) extend the analysis
to consider the dynamic implications of PMGs and show the robustness of the
collusion argument.

Facilitating Competition By industry observers, PMGs are often interpreted as the
initiation of a price war. Despite the general anti-competitive view established by
the tacit collusion stream, prior research has shown that price-matching guarantees
can indeed facilitate competition; the expected prices and profits of competing
retailers can be strictly lower when all stores adopt PMGs, than when they are not
allowed to. The basic factors shown to result in non-monopoly prices are customer
heterogeneity, retail asymmetry, and the hassle cost of requesting a price-match.

Coughlan and Shaffer (2003) consider two retailers selling multiple products
and re-examine the validity of tacit collusion outcome with respect to shelf space
constraints. They show that when retailers have unlimited shelf space, they carry all
of the products in the market, offer price-matching, and push prices up to monopoly.
In the presence of limited shelf space, retailers carry non-overlapping product lines
and the equilibrium prices may be lower than the competitive levels, depending
on the substitutability of products. If the products are strong substitutes for each
other, then retailers prefer overlapping product lines, offer PMGs, and set monopoly
prices.

Chen et al. (2001) show that the adoption of PMGs can generate a competition-
enhancing effect through customers who prefer to shop at a particular store but
are mindful of price-saving opportunities. They characterize the customers by
two attributes: store loyalty and price search cost. Store loyalty measures their
preferences for shopping at a particular store. The analysis considers four customer
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segments: switchers, bargain shoppers, opportunistic loyals and loyals. Switchers
have a low store loyalty and search by cost, and therefore, they only shop at the
lowest priced store. Bargain shoppers, on the other hand, have higher search cost
than switchers and therefore they gather limited price information. Loyal customers
have high loyalty and high search costs and therefore they always purchase from
the same store. Opportunistic loyal customers have high loyalty but a medium
search cost which allows them to get information about market prices and request a
price-match at their favorite store. Note that bargain shoppers obtain information
on competing stores and ask for price-matching at their preferred store. These
customers would have paid the full price if the retailer had no PMGs. In other words,
PMGs reduce the number of customers paying the list price of the retailer. This
competition-enhancing effect can overcome the competition dampening effects of
PMGs and thereby lead to competitive price decisions. Ho et al. (2004) consider a
model where customers engage in search for low prices after the purchase and show
that PMGs in this case actually result in competitive prices.

Price Discrimination The first two research streams suggest that PMGs facilitate
collusion or competition. These two streams either consider asymmetric retailers
or assume that the willingness-to-pay of customers is identical even if they have
different information regarding retail prices. However, the third stream integrates
customer heterogeneity both in terms of information level and willingness-to-pay
(Varian 1980). This stream claims that retailers utilize PMGs to price-discriminate
customers based on their knowledge about market prices (Corts 1997; Png and
Hirshleifer 1987).

Png and Hirshleifer (1987) model two customer segments: tourists and locals.
Tourists have an infinite search cost and therefore an inelastic demand, whereas
locals can collect information about the retailer’s pricing strategies at zero cost
and have an elastic demand. They show that at equilibrium, both retailers will
offer PMG since a retailer loses nothing by offering the guarantee. There exist
multiple equilibria to the game. Specifically, in a duopoly, one retailer offers a high
(monopoly) price to maximize profits from tourists, while the competitor retailer
sets the lower price in the market (effective price) to attract all customers, especially
locals, who are informed about the prices.

Levy and Gerlowski (1991) consider a model where the retailer can affect the
information level of customers through their advertising decisions. Customers select
from the retailers whose advertisements they have received and purchase from the
lowest priced retailer. Authors show that PMGs allow price discrimination at the
expense of lower advertisement levels and lower profits.

Corts (1997) provides a more general model and shows that PMGs can be used
as price discriminating devices which can have both anti-competitive and pro-
competitive effects. He builds a competition model with heterogeneous retailers and
two customer segments: sophisticated and unsophisticated. Sophisticated customers
consider only the effective price (the minimum price in the market), whereas unso-
phisticated customers consider the list prices. Unsophisticated customers are shared
among the retailers according to an unspecified process, which can be considered
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a function of their market share. Sophisticated customers, on the other hand, buy
from the lowest priced retailer. If a number of retailers offer the PMGs, then
sophisticated customers will be equally shared among them. Note that in the absence
of PMGs, the low-priced retailer captures the sophisticated customers. However,
in the existence of PMGs, the high-priced retailers can compete with the low-
priced retailer for the sophisticated customer segment. Therefore, the sophisticated
customers become (relatively) less important for the low-priced retailer. As a result,
the price decision of the low-priced retailer gets closer to its unsophisticated demand
optimal price. This may lead to different results. If the sophisticated customer’s
demand is relatively elastic, the lowest priced retailer increases its price, which in
turn leads to a price increase with the high-priced retailer as well. On the other
hand, if sophisticated customers have a relatively inelastic demand, then the same
reasoning leads to a decrease in prices.

Signalling Evidently, the first three streams of research indicate that customer
type and behavior have a direct consequence on the competitive effects of PMGs.
However, these streams assume that PMGs do not directly influence the purchase
pattern of customers. The fourth stream of research addresses this gap by inves-
tigating customer responses to PMGs. It deals with issues such as how search
and purchase decisions of customers are affected by PMGs, and whether retailers
actually act according to customer expectations when deciding to offer PMGs (Jain
and Srivastava 2000; Kukar-Kinney and Grewal 2007; Moorthy and Winter 2006;
Moorthy and Zhang 2006).

Jain and Srivastava (2000) provide empirical evidence that customers who are
not knowledgeable about the store prices view PMGs as signals of low prices;
therefore they only shop at stores that offer PMGs. In contrast, the choice of stores
by customers who are knowledgeable about the store prices is dependent on a
number of factors. Namely, these are list price, price-matching policy, and store
characteristics such as service quality (so, unlike the previous literature mentioned,
they do not necessarily purchase from the lowest priced retailer). The theoretical
analysis of the authors proves that only retailers with low prices will offer PMGs
which is consistent with customer expectations, but contrary to price discrimination
arguments.

Moorthy and Winter (2006) support the interpretation of PMGs as signals; they
show that low-priced retailers benefit from offering price-matching by indicating
their price positions. Moorthy and Zhang (2006) question the incentives for
(all) differentiated retailers to offer PMGs. They demonstrate that offering the
guarantee signals low service and a low price, while not offering the guarantee is
a signal for high-level service and high price. Mamadehussene (2019) explains how
homogeneous firms may signal their low prices through PMGs: consumers perceive
PMG stores to have lower prices, not because they expect them to have low marginal
costs or service quality, but simply because they offer a PMG.
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8.2.2 Dual Channels

The second stream of literature related to our work examines the management
and coordination of direct channels. Despite many of its advantages, constructing
a direct channel places the supplier in face-to-face competition with the retailer
(Cattani et al. 2004). As such, many papers in the dual-channel literature determine
the conditions under which the supplier and the retailer benefit from the integration
of a direct channel while considering prices (Arya et al. 2007; Cai 2010; Chiang
et al. 2003) or price and service efforts (Bell et al. 2006; Tsay and Agrawal 2004).

There is also a broad operations management literature focusing on inventory
considerations and investigating: (1) the channel inefficiencies arising from demand
uncertainty (Chiang 2010; Mahar et al. 2009), (2) the evaluation of alternative
distribution strategies (Chiang and Monahan 2005), (3) the value of efficient
replenishment (Dong et al. 2007), and (4) the design of coordinating contracts
(Boyaci 2005). More recent works identify the optimal dual-channel strategies
when customers’ purchase channel choice depends on sophisticated metrics, such
as inventory availability and delivery time, in addition to price (Chen et al. 2008).
Although many of these papers consider horizontal competition as well as vertical,
none address the role of price-matching guarantees.

Cattani et al. (2006) is the closest to our work and analyzes a pricing scheme
where the supplier commits to fixing the price of the direct channel equal to the price
of the retail channel to mitigate the channel conflict arising from the integration of
the direct channel. As such, the supplier cannot set a price lower than the retailer,
which artificially annihilates price competition. In contrast, the supplier in our
setting can set a direct channel price lower than the retail channel—even when
offering a price-match guarantee.

8.2.3 Dominant Retailer

The third stream of literature relevant to this paper deals with the supplier–retailer
interactions and implications for channel power (Choi 1991, 1996; Lee and Staelin
1997; Moorthy and Fader 2012). While empirical studies aim to measure the power
of channel members (Kadiyali et al. 2000; Sudhir 2001), early theoretical works
focus on explaining the distribution of profits based on the supply chain structure
and the timing of pricing decisions (Choi 1991, 1996; Lee and Staelin 1997;
Moorthy and Fader 2012). Over the last decade, the literature has recognized the
emergence of dominant retailers due to innovative and efficient operations (Useem
et al. 2003), increased use of information technology, and/or intense manufacturer
competition (Kadiyali et al. 2000). Research has focused on the impact of dominant
retailer on the distribution of channel profits (Chen 2003; Dukes et al. 2006)
and product assortment decisions (Dukes et al. 2009), as well as the design of
coordinating contracts in the presence of a dominant retailer (Raju and Zhang 2005;
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Kolay and Shaffer 2013). Of particular interest to us is Geylani et al. (2007). In
that model, a single supplier sells to a duopoly of retailers. One of the retailers is
dominant and dictates the wholesale price to the supplier, whereas the other retailer
is weak and accepts what the supplier offers. It is shown that the supplier may
respond to the dominant retailer by engaging in marketing activities and shift the
demand from the dominant retailer channel to the weak retailer channel and at the
same time by increasing the wholesale price for the weak retailer. In our model,
the supplier cannot engage in marketing activities, yet we find that price-matching
guarantee offer by the supplier shifts the demand from the dominant retail channel
to the direct channel.

8.3 Demand Model

For analytical tractability, we analyze availability verification and channel coverage
separately. In this section, we build a general demand model that can be easily cus-
tomized to investigate these two cases. We categorize the real-life implementation
of PMGs into two policies. Under the first, the retailer guarantees it will match the
lower price offered by its competition to any customer demanding a price-match;
we call this simple price-matching policy, or PM for short. Under the second policy,
the retailer verifies the availability of the item at the competitor store, and matches
the lower price only if the item is available at that store; we call this price-matching
based on availability, or PMA for short.

Consider two retailers, R1 and R2, both selling the same product. Table 8.1
provides the glossary of notations used. The retailers simultaneously announce the

Table 8.1 Notation

i Index for each channel. In the main model, we have i ∈ {1, 2} and in the dual

channel model we have i ∈ {R, S} representing the retailer-owned and supplier-
owned channels

Ri Retailer i

Pi The PMG policy of channel i where Pi ∈ {C,PM,PMA}
δi Product availability at channel i

qi Perceived quality of each channel i

pi Announced list price at each channel i

pe The minimum of the two list prices, i.e., min{p1, p2}
t Per distance travel cost of a customer

ti (l) Cost of travel for the customer in location l to retailer i

V Customers valuation of the ideal product

u
Pi

i (l) The net utility gained by a customer located at point l by visiting channel i

Si Strategy of channel i consisting of the PMG policy and price

di(Si ,Sj ) Demand for channel i

πi(·) Profit for channel i
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type of price-matching guarantee that they are offering before the pricing decisions.
They have three options available: no price-matching guarantee (C), price-matching
(PM), and price-matching based on availability (PMA). The retailers simultaneously
set prices p1 and p2, to maximize profits, given their availability levels and the
PMG policy (C, PM, or PMA). We define the availability of a retailer as the
probability that a customer will find the item on the shelf any time she or he visits
the store. Availability levels for retailers are exogenous parameters, denoted by
δi ∈ (0, 1], i = {1, 2}. Essentially, this means that retailers have already specified
and committed to a desired fill-rate6 (or in-stock percentage) for the product. Since
fill-rate decisions typically are made in advance compared to pricing policies, it is
reasonable to assume availability levels as given parameters. In Sect. 8.4.4, we relax
this assumption and endogenize the fill-rate decisions of the firms. We assume that
the unit cost of the product is identical for the two retailers and we normalize it to
zero.

On the demand side, customers make a store choice based on the utility provided
by the offerings of each retailer. Each retailer’s demand is assumed to be equal to
the aggregate demand multiplied by its market share, which depends on the PMG
policy, price, and fill-rate. The total number of customers who want the product (i.e.,
the aggregate demand) is normalized to 1.

The retailers are located at the end points of a unit line and potential customers
are uniformly distributed between the retailers. Each customer has a constant
valuation V for the ideal product. We allow for vertical differentiation between
the retailers through their perceived quality. In our model, we denote the quality
of the retailers as q1 and q2. Each customer purchases zero units or one unit of the
product, and incurs a travel cost of t per unit distance traveled. Note that the travel
cost represents the degree of horizontal differentiation between the retailers. That
is, a high travel cost represents highly differentiated retailers—which could be due
to distinct store experiences such as sales features and store design—or due to large
geographical distance between them, and vice versa (Tirole 1988, p. 279).

All the retail characteristics (i.e., price, quality, fill-rate, and PMG policy) are
observable by individual customers. Customers cannot verify product availability
before visiting a retailer, but they know the fill-rate, i.e., the anticipated probability
of finding the product in stock at each retailer. Each customer makes a store choice
in order to maximize her/his expected net utility. We assume that the cost of visiting
a second retailer is arbitrarily high and, therefore, customers visit just one retailer.
Note that this high travel cost is about physically visiting the second retailer and not
about the cost of price information. In that sense, customers are aware of the prices
in each store as well as the product availability.

Utility Functions Without loss of generality, we place R1 at origin and R2 at
the end of the unit line. In what follows, we derive the expected net utility of a
representative customer visiting R1 under each possible PMG policy; the expected

6Fill-rate of a product represents the long-run probability of finding it in stock for immediate
purchase.
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utility of visiting R2 can be obtained similarly. Let ti (l) denote the cost of traveling
to Ri for a customer located at point l on the unit line. Specifically, t1(l) = t l and
t2(l) = t (1 − l). Furthermore, let u

Pi

i (l) denote the expected utility obtained at Ri

under policy Pi ∈ {C,PM,PMA}, i ∈ {1, 2}. Based on the above description, the
expected utility of visiting R1, when R1 is not offering a PMG, is

uC
1 (l) = (V q1 − p1)δ1 − t1(l). (8.1)

Consider now the case where R1 offers PM. While estimating the utility of
visiting R1, customers will consider the price of R2, too. On one hand, if R1 is
the high-priced retailer, then customers will ask for a price-match if they visit R1.
Each price-match request is going to be granted since the PMG is not contingent on
availability. On the other hand, if R1 is the low-priced retailer, then there is no need
to ask for a price-match. Thus, the list price of R1 can be replaced by the minimum
of the two prices, pe ≡ min{p1, p2}, which we denote as the “effective price.” The
expected utility in this case is

uPM
1 (l) = (V q1 − pe)δ1 − t1(l). (8.2)

Lastly, suppose that R1 offers PMA. Similar to the PM case, customers ask for
a price-match at R1. However, the end result of their price-match requests depends
on the availability of the product at R2. Particularly, if the product is available at
R2, then customers receive the effective price and demand one unit of the product.
If the product is not available at R2, then they face the list price p1, and demand one
unit of the product as long as the price is less than their valuation. In other words,
the price faced at R1 is pe with probability δ2 and p1 with probability 1 − δ2, and
the expected price is given by p1 ≡ peδ2 + p1(1 − δ2). The expected utility in this
case is

uPMA
1 (l) = (V q1 −p1)δ1 − t1(l) = (V q1 −peδ2 −p1(1 − δ2))δ1 − t1(l). (8.3)

Demand Customers compare the above utilities and visit the retailer providing
the higher expected net utility, as long as the net utility is also non-negative.
For instance, if neither retailer offers a PMG, then each customer compares
uC

1 (l) and uC
2 (l). The customers located at lu1 = (V q1 − p1)δ1/t and lu2 =

1 − (V q2 − p2)δ2/t are indifferent between not buying and visiting R1 and R2,
respectively. The customer located at lu1−u2 = [t + (V q1 − p1)δ1 − (V q2 −
p2)δ2]/(2t) is indifferent between the two retailers.

Depending on the problem parameters and strategies of the retailers, we may
have an uncovered market, meaning that there is a non-empty set of customers
who cannot obtain a non-negative expected utility from any of the retailers and,
therefore, do not visit any of them. In this case, the market share of Ri is going to
be ((V qi − pi)δi)/t for i = 1, 2. We may also have a covered market where all
customers obtain a non-negative expected utility from at least one of the retailers. In
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this scenario, the market shares of R1 and R2 are going to be [t + (V q1 − p1)δ1 −
(V q2 − p2)δ2]/(2t) and 1 − [t + (V q1 − p1)δ1 − (V q2 − p2)δ2]/(2t), respectively.

When we have an uncovered market scenario, each retailer acts as a local
monopoly. This is an uninteresting case to analyze since retailers are essentially not
competing for any of the customers in the market. Therefore, they do not have any
incentive to offer a PMG. So, in the sequel, we assume that the problem parameters
are such that the market is covered at equilibrium. A covered market equilibrium is
guaranteed for a relatively low travel cost, i.e., retailers are close enough in terms
of store characteristics and/or geographical proximity and compete directly for
customers. Indeed, this assumption is consistent with the real-life implementation
of PMGs, since they are valid only for the retail stores located in the same market
area.

If we let S = (Si ,Sj ) represent the strategy of the retailers, where Si =
(Pi , pi) for retailers i = 1, 2 and j = 3 − i, then we can derive the market shares
of the two retailers for any combination of PMG offers as follows:

d1(S ) = t + (V q1 − p
P1
1 )δ1 − (V q2 − p

P2
2 )δ2

2t
,

d2(S ) = t − (V q1 − p
P1
1 )δ1 + (V q2 − p

P2
2 )δ2

2t
,

where pC
i = pi , pPM

i = pe, and pPMA
i = pi = peδj + pi(1 − δj ) for i = 1, 2 and

j = 3 − i.

8.4 Verification of Availability as a Price-Matching Condition

In this section, we analyze the equilibrium price-matching policy of the retailers and
identify how the verification of availability as a price-matching condition changes
the pricing decisions.

The game consists of two stages. In stage one, retailers set PMG policies. In
stage two, retailers choose prices. At each stage, involved parties make decisions
simultaneously and we seek subgame perfect equilibrium by solving the game
backwards. We consider two different models for the consumer behavior. We first
assume that customers are cognizant of the availability clause as a price-matching
condition; we refer to this case as the attentive customers. Specifically, customers
make their store choice decisions based on the anticipated probability of being
successful in their price-match requests in addition to other dimensions, such as
price and anticipated probabilities of finding the product in stock at each retailer.
In short, they are aware of the availability clause as a price-matching condition.
Subsequently, we analyze a setting where customers ignore the availability clause
as a price-matching condition, and only consider the price and the anticipated
probability of finding the product in stock at each retailer; we call this case the
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inattentive customers. Note that our results would continue if customers only
consider the price and ignore the issue of product availability and, therefore, ignore
the availability clause completely, while making store choices.

In each case, there are nine subgames to be considered in stage two. For the
sake of expositional clarity, we focus on the strategic decision of whether firms
should offer a price-matching guarantee and report on the managerial findings of
our analysis. All the technical details, the proofs of the propositions, as well as the
expressions for equilibrium decisions are available from the authors upon request.

8.4.1 Attentive Customers

Profit Functions Suppose that R1 is not offering any type of PMG. If customers
decide to visit R1, then they will face the list price, independent of the PMG policy
offered by R2, and receive one unit of the product as long as the item is available.
Accordingly, the expected revenue in this setting is

π1(C, p1,S2) = p1δ1D1(C, p1,S2).

Suppose now that R1 is offering PM. While making their store decisions,
customers will look at the effective price instead of the list price because the price-
matching offer at R1 is not conditional on availability. Accordingly, the expected
revenue function of R1 is

π1(PM,p1,S2) = peδ1D1(PM,p1,S2).

Recall that, when offering PMA, R1 matches the price of R2 only if the product
is available at R2 at the time of the request. In other words, some of the customers
visiting R1 will be able to get the effective price while others will receive the list
price. We assume that the inventory is proportionally rationed in the event of a stock-
out. Then, the expected revenue at R1 is

π1(PMA,p1,S2) = [peδ2 + p1(1 − δ2)]δ1.D1(PMA,p1,S2).

Note that since customers are sensitive to product availability, the inventory
decisions of the retailers have an effect on demand in all three scenarios. However,
only under PMA policy the inventory decision of the competing retailer has a direct
effect on the price charged to customers, i.e., pi = peδj + pi(1 − δj ) for i = 1, 2
and j = 3 − i.

Equilibrium Analysis For analytical tractability, we first report on the case where
two retailers are symmetric in terms of the perceived quality and the fill-rate that
they provide, specifically: q1 = q2 = 1 and δ1 = δ2 = δ < 1. In Sect. 8.4.4, we



210 A. Nalca et al.

extend our model and show that the managerial results of our framework continue
to hold when we endogenize the fill-rate decisions of the two retailers.

Suppose that both retailers offer PM. At any solution with equal prices, R1 is
unable to attract more customers through price reduction since R2 automatically
matches the lower price because of its PMG. Also, R1 has no incentive to increase
the price, because it is also offering PM and has to match the price for all of its
customers, i.e., the demand and the profit margin is going to be the same even if
R1 increases the price. In other words, offering a PM policy completely eliminates
the price competition between the retailers, allowing them to collectively increase
prices. As a result, when both retailers offer the guarantee, there exists a Pareto
dominant price equilibrium where each retailer charges a price higher than the no-
PMG case and also makes more revenue compared to the no-PMG case.

Suppose that both retailers offer PMA. If a retailer tries to attract more customers
by cutting the price, then the competing retailer will match the price as long as the
product is available. As such, similarly to the PM case, offering PMA policy also
allows retailers to collectively increase prices and revenues compared to the no-
PMG case.

A complete description of the game also requires the comparison between all
three in order to identify the effects of verifying the availability before matching the
price, which we provide in the following proposition.

Proposition 8.1 (Equilibrium PMG Policy) Offering a simple price-matching
guarantee (i.e., PM policy) is the (weakly) dominating equilibrium strategy for both
retailers. At equilibrium, retailers tacitly collude, charge a higher price, and make
more revenue compared to the no-PMG case.

In terms of the availability verification clause, there exists a threshold for the unit
travel cost t∗ such that the following are true.

• If the travel cost is lower than the threshold value, then verification of availability
as a PMG condition lowers the price and decreases retail revenues.

Consequently, PMA policy is strictly dominated by PM policy.
• If the travel cost is higher than the threshold value, then verification of availabil-

ity as a PMG condition has no effect on the equilibrium decisions and revenues.
Consequently, PMA policy is identical to PM policy.

So, if customers are conscious about availability implications and take into
consideration the probability of not receiving a price-match while making store
choices, then retailers should never verify the availability as a PMG condition
and should match the price of the competing retailer without any conditions (i.e.,
adopt PM).

For the sake of discussion, let us look at the benefits and costs of verifying the
availability from the perspective of R1. Verifying the availability allows R1 to charge
a higher price to its customers if a stock-out is observed at R2. Suppose that the
state of the demand is high and that the inventory of R2 is exhausted. As soon
as the last unit in R2 is sold, R1 can start declining the price-match requests via
its availability verification clause. By declining the requests, R1 charges a higher
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Fig. 8.3 Effects of PMGs with attentive customers. (a) Change in price. (b) Change in revenue

price to its customers when they are at the store asking for a price-match, i.e.,
once their travel cost to R1 is sunk cost and there are no units available at R2.
Charging a higher price by declining requests is beneficial for R1 since it extracts a
higher margin from these customers. However, there is also a cost attached to such
availability verification. Under PM policy, R1 does not lose any customers to R2,
even if R1 has a higher list price since it matches the lower price of R2 for all its
customers. However, when verifying the availability, R1 is matching the price only
if the product is available at R2. That is, R1 is matching the price not for all but
some of its customers. As such, R1 loses some customers to R2. We observe both
effects while deriving the best response functions of the players under PMA policy.
However, in equilibrium, the cost associated with the verification condition turns out
to be stronger than its benefits, thus creating an incentive for the retailers to reduce
their prices compared to the PM case (Fig. 8.3).

Naturally, the benefit of a price reduction depends on the depth of the price cut,
as well as the size of the customer segment that the retailers can attract. If the travel
cost is low, then retailers can attract a significant number of customers by lowering
prices. However, if the travel cost is high, then they need a much deeper price
cut to attract the same number of customers. Therefore, a sufficiently low travel
cost triggers competition leading to lower equilibrium prices under PMA policy
compared to the PM case, and a high travel cost results in the same pricing and
inventory decisions under both PM and PMA policies.

8.4.2 Inattentive Customers

In this section, we look into the case of customers who disregard the availability
clause while making store choice decisions. That is, inattentive customers who
effectively assume that they will always be able to execute the price-match
successfully.

The utility functions for this case can be derived from Eqs. (8.1)–(8.3). The net
utility of visiting R1 from a customer’s perspective for three different PMG policies
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can be written as uC
1 (l) = (V −p1)δ1 − t l, uPM

1 (l) = uPMA
1 (l) = (V − pe)δ1 − t l.7

Clearly, there is no difference between PM and PMA policies from the customer’s
perspective. The market share and demand of each retailer can also be derived and
substituted into the original expected revenue functions.

Similar to the previous case, we can prove the existence of pure strategy
equilibrium under all possible PMG scenarios. Specifically, we can show that
offering a PM policy dominates not offering a PMG, and leads to higher equilibrium
prices and revenues, supporting that the tacit collusion outcome of deterministic
PMGs continues to hold under PM policy in an uncertain demand environment with
inattentive customers. But, we are more interested in identifying the effects of an
availability verification clause; for this we need to compare PM and PMA policies.
The following proposition summarizes the equilibrium of the game.

Proposition 8.2 (Equilibrium PMG Policy) If customers are inattentive to the
availability verification clause, then the following are true:

• Offering PMA policy is the equilibrium strategy for retailers.
• When both retailers offer PMA, there exist two equilibria that are mirror images

of each other. In each equilibrium, one retailer charges a higher price and earns
more, compared to the other retailer and the PM game. The other retailer sets its
price to be identical to the PM equilibrium, and also earns the same revenue.

• Verification of availability clause leads to higher retail prices.

Note that, when retailers offer PMA, there are two equilibria that are mirror
images of each other. This dual outcome makes it impossible to favor one equilib-
rium based on commonly used selection criteria such as Pareto or Risk Dominance
(Harsanyi and Selten 1988). Given the symmetry, the analysis and managerial
insights of each equilibrium lead to the same conclusions. For this reason, we
are not concerned about the equilibrium choice and we proceed with the implicit
assumption that the players have some mechanism by which they arrive at one of
these equilibria (Schelling 1980). Let the subscripts H and L represent the high-
and low-priced retailers under PMA policy, respectively. Accordingly, the previous
proposition says that in equilibrium RH sets price as pPMA

H and earns πPMA
H and

RL sets price as pPMA
L and earns πPMA

L where pPMA
H > pPMA

L = pPM and
πPMA

H > πPM = πPMA
L (Fig. 8.4).

Recall that customers now believe that they will always get the effective price.
Thus, RH is still able to attract customers based on the effective price even if it lists
a higher price. When customers visit the store, RH matches the price as long as

7An alternative modeling approach is as follows. While making store choice decisions, customers
focus completely on price and ignore the possibility of a stock-out and, therefore, also the possible
decline of their price-matching request based on availability. We have explored this approach in
detail; the managerial and economic insights as to the effects of verifying the availability are the
same as discussed in Sect. 8.4.2. In that sense, the two setups: (1) customers consider the possibility
of stock-outs while making store choices but ignore the availability condition of PMGs, or (2) they
ignore the possibility of stock-outs completely, are equivalent.
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Fig. 8.4 Effects of PMGs with inattentive customers. (a) Change in price. (b) Change in revenue

RL has the products available. If RL faces a stock-out, then RH can start declining
the price-match requests and charge its list price since it is the sole provider of
the product in the market place. This scenario provides an incentive for retailers
to set a higher price than the competitor and to extract a premium from customers
when there is scarcity in the market. Consequently, RH declines their price-match
requests to achieve a higher profit margin. As such, verification of availability leads
to a higher margin as well as to higher revenues.

8.4.3 Comparison of the Two Cases: Attentive Customers
Versus Inattentive Customers

Our analysis reveals that the impact of availability verification as a price-matching
condition depends significantly on how consumers make their retail store choice
decisions. Specifically, it depends on whether customers are attentive to the con-
sequence of availability verification clause. In the following, we briefly summarize
the impact of the availability verification clause on both the degree of competition
between the retailers and on the consumer surplus. We measure consumers’ surplus
as the expected net utility obtained by all customers after visiting the retailers.

Whether with attentive or inattentive customers, offering a simple price-matching
guarantee (PM) eliminates price competition, thus allowing retailers to collectively
increase prices compared to the no-PMG scenario. This result shows that the tacit
collusion results related to PMGs in a deterministic setting continue to hold even
with less than perfect product availability.

More interesting is the effect of verification of availability captured in the PMA
policy. If customers are cognizant about the possibility of product unavailability,
then verification of availability may re-institute price competition, particularly if
the travel cost is sufficiently low.

Note that the prices with availability verification are still higher than the case of
no-PMG, that is, the price competition is not completely re-installed. As a result
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of the partially re-installed price competition, verification of availability actually
decreases retail revenues.

In summary, from the retailers’ point of view, verification of availability is not
beneficial with attentive customers, and can actually be detrimental when the degree
of horizontal differentiation between the retailers is high. Our analysis reveals that
the verification of availability as a price-matching condition (weakly) increases the
consumers’ surplus if customers are attentive.

We can also show that verification of availability as a price-matching condition
decreases the consumers’ surplus if customers are inattentive to the availability
clause. So, verification of availability is detrimental to customers if they ignore
the price-matching conditions. In this scenario, availability-contingent guarantees
not only strengthen the tacit collusion ability of the retailers but also allow them
to increase prices and discriminate against customers based on availability. This
means that verification of availability acts as a tool for discrimination and leads to
price dispersion even in a symmetric market when all customers are informed about
prices.

Note that, based on the existing literature on PMGs, we need information
heterogeneity among customers in order to observe the price discrimination results
(Png and Hirshleifer 1987). However, we establish that availability verification may
lead to price dispersion and price discrimination in the market, even if all customers
are informed about retail prices. From the retailers’ perspective, verification of
availability leads to higher revenues and is the equilibrium strategy.

8.4.4 Extended Discussions on Fill-Rate

In the above analysis, we assumed that the fill-rate of each retailer was exogenously
set. We also assumed that the fill-rate of each retailer is identical, primarily for
expositional brevity. However, these two assumptions do not restrict the generality
of our findings. In particular, we have extended our analysis to allow retailers to
make fill-rate decisions. The game will now consist of three stages. In the first
stage, retailers simultaneously decide on their price-matching policy. In the second
stage, retailers simultaneously decide on their fill-rate. In the third stage, retailers
simultaneously decide on their price.

In order to ensure that the optimal fill-rate decisions are interior, we assume a
quadratic cost function αδ2

i as the cost of retailer i = 1, 2. We again solve the
game via backward induction. The equilibrium decisions of the retailers in terms
of PMGs and the verification of availability are identical, even when the fill-rate
decisions are involved. Specifically, PMGs allow retailers to collude and increase
prices compared to the no-PMG case. Retailers also increase the fill-rate provided
as the tacit collusion eliminates the price competition between them and intensifies
the degree of service competition (fill-rate). If customers are attentive to the
availability verification condition, then verification of availability re-institutes the
price competition and, thereby, leads to lower prices and higher fill-rates compared
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to the simple PM case. If, however, customers are inattentive to the availability
verification condition, then the verification clause leads to higher retail prices and
lower fill-rates.

8.5 The Impact of Supplier-Owned Direct Channel on
Price-Matching

Our goal in this section is to analyze the extent of channel coverage as a price-
matching condition. For this purpose, we consider a dual-channel setting. We
suppose that one of the retailers in our general model framework is owned and
operated by a supplier that distributes its product via this direct channel, as well as
by the retail channel. Specifically, we will keep retailer 1 as a reseller of the product
and suppose that retailer 2 is owned by the supplier, which also sells its product
through retailer 1. The game now consists of three stages. In the first stage, the
retailer and the supplier simultaneously announce whether or not they are offering
a price-matching guarantee. In the second stage, the unit wholesale price, w, is
declared. In the third stage, the supplier announces the direct channel price, pS ,
and the retailer announces the retail channel price, pR .

The second stage of the game is essentially the specification of the wholesale
price between the supplier and the retailer.

We are interested in understanding the role of PMGs in dual channels. PMGs are
known to alter the demand of competing firms as well as the resulting equilibrium
prices (Hay 1981; Salop 1986). Accordingly, they are expected to have an impact
on the pricing decisions between the supply chain partners as well. Therefore, it
is important to identify the role of the channel power between the retailer and the
supplier.

In our stylized framework, we simplify the bargaining process by giving absolute
power to one of the supply chain members. We investigate two distinct scenarios:
a supplier dominant chain, in which the supplier decides the wholesale price
for its product, and a retail dominant chain, in which the retailer dictates the
wholesale price for the supplier’s product. Channel power, in our model, through
the ability of dictating the wholesale price, is artificially imposed and not self-driven
through unique characteristics such as operational efficiency, excellence in quality,
or forcible market power. However, it is also worthwhile to note that our model
does not forego the advantage that a firm can enjoy through perceived quality and
service characteristics. In fact, through a general model of horizontal and vertical
differentiations, we allow either the retail channel or the direct channel to benefit
from providing higher quality and service. Nonetheless, analyzing the scenarios of
supplier and retail dominance is sufficient for our analysis to demonstrate that a
shift in channel power provides a simple explanation as to why we observe price-
matching guarantees, particularly by suppliers, in dual channels.
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Note that, being an operational decision, product availability would not be
considered the main criteria for the retailer and the supplier to make their price-
matching decisions. Therefore, and also for analytical tractability, we suppose that
both channels have perfect availability in the analysis of this section. The utility
functions for this case can be derived from Eqs. (8.1)–(8.3) by setting δ1 = δ2 = 1.
Moreover, we normalize the perceived quality of the retail channel as qR = 1, and
denote the perceived quality of the supplier channel as qS > 0. In our analysis, we
consider all cases: 0 < qS ≤ 1 and 1 ≤ qS . We can then derive the market shares of
the two retailers for any combination of PMG offers as follows:

dR(S ) = t + (V − p
PR

R ) − (V qS − p
PS

S )

2t

dS(S ) = t + (V qS − p
PS

S ) − (V − p
PR

R )

2t

where S = (Si ,Sj ) represent the strategy of the retailers with Si = (Pi , pi),
Pi ∈ {C,PM}, pC

i = pi , pPM
i = pe, for i = 1, 2 and j = 3 − i.

The profits for the retailer and the supplier, respectively, are then given as

πR(S ) = (p
PR

R − w) · dR(S ) and πS(S ) = p
PS

S · dS(S ) + w · dR(S ).

Note that, as a result of the dual-channel approach, the suppler collects a
margin—albeit different from each channel—from all the transactions in the market.
The supplier’s profit margin from the direct channel sales is pS whereas the profit
margin from the retail channel sales is w.

8.5.1 Traditional Chain

In the traditional chain, the supplier sets the product wholesale price. An important
observation is that the supplier can decide the exact profit margin of the retailer
when the retailer is offering a price-matching guarantee. The retailer’s profit margin
is min{pR, pS} − w when offering a price-matching guarantee. If the supplier sets
the direct channel price lower than the retail channel price, then the profit margin
for the retailer becomes min{pR, pS} − w = pS − w and both pS and w are set by
the supplier. In fact, price-matching becomes detrimental for the retailer since the
supplier eliminates the retailer’s margin by setting pS ≤ w. The retailer is left with
no profits regardless of the supplier’s price-matching strategy. Therefore, offering
price-matching is the dominant strategy for the retailer.

In a similar vein, the supplier also does not offer the guarantee. If the supplier
offers a price-matching guarantee, then she cannot charge a higher price than the
retailer due to her price-matching promise. All the customers of the direct channel
request the supplier to match the lower price of the retailer. In addition, a segment
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of customers, who would otherwise shop at the retail channel attracted by the
lower price, start shopping at the direct channel. As such, the retailer cannot attract
customers by cutting the price. Since the demand is insensitive to the price, the
retailer increases his price.

In terms of supplier profitability, we see that price-matching decreases the price
and increases the demand of the direct channel. However, the supplier would be
forced to provide a much deeper price cut to achieve an equivalent demand increase
in the absence of price-matching. As such, direct channel profits are higher under
price-matching.

We observe the opposite effect on the retail channel. Price-matching decreases
the retail channel demand while increasing the profit margin of the supplier. Yet,
the overall effect of the demand decrease is stronger, so the supplier is left with
lower retail channel profits. In fact, the decrease in the retail channel profit is higher
than the increase in the direct channel profit and, therefore, it is not profitable for
the supplier to offer a price-matching guarantee. We formalize this result in the
following proposition.

Proposition 8.3 In the traditional chain, price-matching guarantees do not prevail
in equilibrium.

Neither the supplier nor the retailer offers a price-matching guarantee at equi-
librium. This finding is particularly valuable since the supplier would benefit
from offering the price-matching guarantee if the wholesale price is an exogenous
problem parameter in our model framework. However, if the supplier can set the
wholesale price for her product, then offering a price-matching guarantee is no
longer a beneficial strategy. The main reason is that the supplier has the ability
to capitalize on certain situations by adjusting the wholesale and the direct channel
prices together and shifting the demand from one channel to the other. This ability
is forfeited when the supplier offers a price-matching guarantee.

If the direct channel quality is sufficiently high, then the direct channel price will
be higher than the retail channel in the absence of price-matching. This means that
the supplier enjoys high margin-low demand in the direct channel and low margin-
high demand in the retail channel. Offering a price-matching guarantee shifts
demand from the retail channel to the direct channel. The supplier could facilitate
this shift by adjusting the wholesale price in the second stage, even without price-
matching in place—if it was profitable for the supplier. Offering a price-matching
guarantee limits the supplier’s ability to extract profits from the retail channel by
shifting demand from the retail channel to the direct channel. Consequently, the
supplier’s profit loss from the retail channel is increasing in a convex fashion as the
channel quality increases. As a result, the value of price-matching for the supplier
is negative and decreasing in a convex fashion as the quality increases. Eliminating
the price competition through promises to match the price is not beneficial for the
supplier in the traditional chain because the ability to manipulate the price and
demand in each channel through the wholesale price is more available.
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8.5.2 Retail Dominant Chain

In the retail dominant chain, the wholesale price—i.e., the profit margin of the
supplier from the retail channel—is decided by the retailer in the second stage of the
game. This means that the retailer can set the supplier’s margin for the direct channel
if the supplier offers the price-matching guarantee. In particular, the supplier’s
margin in the direct channel would be min{pR, pS} and it would be decided by
the retailer through price-matching when pR ≤ pS . As such, dictating the profit
margin of the opponent through the price-matching guarantee of the opponent is
possible in the retail dominant chain as well.

If the retailer sets the wholesale price equal to zero, then the supplier does
not make any profit from the retail channel and direct channel remains the only
source of profit for the supplier. However, there may be other benefits of selling
through the retail channel that are not quantified in our model setting; for instance,
product awareness and brand equity. Therefore, we assume that the supplier agrees
to sell through the retail channel even when the wholesale price is zero. As a
result of this assumption, however, there is no incentive for the retailer to set a
positive wholesale price. The only exception is that there are cases, depending on
the problem parameters, where the profit function of the retailer is constant with
respect to the wholesale price.

In these cases, the retailer can project the wholesale price on the retail price and
maintain a constant level of profit. So, the retailer can either favor the supplier by
providing a positive wholesale price or favor the customers by setting the wholesale
price equal to zero. Our analysis shows that the managerial insights, with respect
to the implications of price-matching guarantees, are robust with respect to the
wholesale price that the retailer chooses among the alternatives. For the sake of
expositional clarity, however, we proceed with the assumption that the retailer favors
the customers and sets the wholesale price equal to zero.

Price-Matching by the Supplier Recall that offering a price-matching guarantee
is not a profitable strategy for the supplier in a traditional chain. However,
implications for the supplier are different in the retail dominant chain. Specifically,
offering a price-matching guarantee is the preferred strategy by the supplier in the
retail dominant chain. The price-matching guarantee essentially allows the supplier
to shift demand from the retail channel to the direct channel. In the retail dominant
chain, the supplier has limited influence on the wholesale price and the retail channel
price. Therefore, the supplier has limited ability to allocate customers to the two
channels via the direct channel price in the absence of price-matching. Therefore,
shifting demand from the retail channel to the direct channel via the guarantee is
valuable for the supplier.

Price-Matching by the Retailer Offering a price-matching guarantee has adverse
consequences for the retailer in the traditional chain since it allows the supplier
to extract all the profits of the retail channel. This is no longer a risk in the retail
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dominant chain because the retailer dictates the wholesale price in the second stage
of the game.

The retailer is indifferent to offering a price-matching guarantee when the direct
channel quality is high. However, there is a region—relatively high travel cost
and relatively low quality—where the retailer strictly prefers not to offer a price-
matching guarantee. If the direct channel quality is low, then the retail channel
captures a significant portion of the customers. By offering a price-matching
guarantee, the retailer reduces his profit margin and attracts more customers. But the
increase in demand is insufficient to overcome the loss of the lower profit margin
since the demand is already high without the price-matching in place. As a result,
the profits are lower with the price-matching guarantee. On the other hand, if the
quality is high, then the retailer does not attract a lot of customers in the absence
of price-matching. Price-matching allows the retailer to increase the demand. In
fact, the increase in the demand outweighs the loss due to the lower profit margin.
Therefore, it is profitable for the retailer to offer a price-matching guarantee for
relatively high quality.

Equilibrium We now present the equilibrium solution and investigate the impact
of PMGS on the profitability of the retailer and the supplier compared to the case
where price-matching is not allowed.

Proposition 8.4 The equilibrium price-matching strategy for the retailer and the
supplier in a retail dominant chain is as follows.

Equilibrium strategy

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(S̄, R̄) if qS ≤ min{4t − 2, (3t − 1)/2},
(S̄, R) if min{4t − 2, (3t − 1)/2} ≤ qS ≤ max{1 − t, t + 1/3},
(S, R̄)

{
if t ≤ 2/3 and max{1 + t, 3 − 3t} ≤ qS

or if 2/3 ≤ t ≤ 1 and t + 1/3 ≤ qS,

(S, R) if max{1 − t, t + 1/3} ≤ qS ≤ min{1 + t, 3 − 3t},

where

(S̄, R̄) = Neither the supplier nor the retailer offers price-matching guarantee,

(S̄, R) = The retailer offers price-matching, but the supplier is indifferent,

(S, R̄) = The supplier offers price-matching, but the retailer is indifferent,

(S, R) = Both the supplier and the retailer offer price-matching guarantee.

A comparison of the equilibrium solution to the case of no PMGs reveals that
there are regions where both the retailer and the supplier benefit from offering
price-matching guarantees, or only one of the channel members benefit from price-
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Fig. 8.5 Equilibrium in the retail dominant chain. (a) Equilibrium strategy. (b) Impact of price-
matching on profitability

matching guarantees. In the former case, consumer surplus decreases compared to
the no price-matching guarantee case.

The four equilibrium categories are also depicted in Fig. 8.5. In the first one,
labeled No PM, the retailer does not offer a price-matching guarantee. The supplier
is indifferent since the direct channel price is already lower than the retail channel.
In this case, neither the retailer nor the supplier offers price-matching. In the second
category, labeled Retailer PM, the retailer offers price-matching guarantee. The
direct channel quality is relatively low in this region. As such, the supplier prefers to
be in the low-priced channel, but the retailer’s price-matching is sufficient to change
the equilibrium prices. Therefore, given the retailer’s price-matching guarantee, the
supplier is indifferent between offering and not offering a price-matching guarantee.
In the third category, labeled Supplier PM, we have the same phenomenon except
the retailer and the supplier switch roles, i.e., the supplier offers price-matching
guarantee and the retailer is indifferent. In the fourth and last category, labeled Both
offer PM, both the retailer and the supplier offer price-matching guarantees.

There are cases in the retail dominant chain where the supplier is indifferent to
offering price-matching provided the retailer is offering, or vice versa. But, until
this point, we have overlooked how the price-matching offer by the retailer affects
the profits of the supplier. Figure 8.5b reports on the impact of PMGs by comparing
the equilibrium profits of the retailer and the supplier to the case where there are
no price-matching guarantees. A closer look at the figure shows that the price-
matching offer benefits both channels only in a particular region. In this region, the
degree of both vertical and horizontal differentiation is low. So, the two channels
are very similar to each other, and eliminating the price competition through PMGs
benefits both. However, for the remaining set of problem parameters, PMGs by one
of the channels hurt the profitability of the other channel. These are the cases where
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the two channels are sufficiently differentiated, either horizontally or vertically. For
instance, suppose that the direct channel quality is low. The supplier would like
to set a low price in order to attract customers to the direct channel. Offering a
price-match benefits the retailer since it allows the retailer to capture customers
who would otherwise visit the direct channel, which in turn hurts the supplier.

8.5.3 A Comparison of Traditional and Retail Dominant
Channels

PMGs fail to prevail in a traditional dual channel. In a traditional chain, offering
a price-matching guarantee becomes an important decision for the supplier only
if the direct channel has a higher quality than the retail channel. In this case, in
the absence of a price-matching guarantee, the supplier charges a higher price in
the direct channel while encouraging the retailer to charge a low price through a
low wholesale price. In essence, the supplier positions the two channels such that
the direct channel enjoys the high profit margin while the retail channel enjoys the
high volume. However, if the supplier offers a price-matching guarantee, she will
effectively be shifting demand from the retail channel to the direct channel when
indeed it is more profitable to keep demand at the retail channel. The ability to
manipulate the channel prices is more valuable for the supplier than price-matching
guarantees. For the retailers, offering a price-matching guarantee is also detrimental
in this scenario. If the retailer offers a price-matching guarantee, then the supplier
can squeeze the profit margin of the retail channel by inflating the wholesale price,
and also by forcing the retailer to price-match by lowering the direct channel price.

In a retail dominant chain, all possible outcomes (both parties offer price-
matching guarantee, neither offers, only the retailer offers, and only the supplier
offers) are possible at equilibrium, depending on the degree of vertical and
horizontal differentiation between the retail and the direct channel. Our findings
suggest that, if the offerings of the two channels are alike (with a small degree of
horizontal differentiation), then customers’ channel (degree of vertical differenti-
ation) preference becomes a determining factor in the benefits of price-matching
guarantees. Managers of the preferred channel should capitalize on this opportunity
by offering price-matching guarantees. If customers have no distinct preference over
one channel, then both channels benefit from offering the guarantee.

Under these conditions, consumer welfare is negatively affected. PMGs by both
channels soften the intensity of price competition and support high channel prices.
As a result, the consumer surplus decreases compared to the no price-matching
scenario. On the other hand, if the channel offerings are diverse (high degree
of horizontal differentiation), then retail channel managers should be cautious in
setting price-matching strategies. In particular, they should avoid offering PMGs
when the retail channel is highly preferred, because, in this scenario, the retail
channel already attracts a significant portion of the market demand.
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8.6 Conclusion

Our goal in this chapter is to identify how price-matching guarantee conditions,
such as verification of availability and the extent of channel coverage (traditional
versus direct channels) change the value proposition of price-matching guarantees.
Specifically, we shed light on the following two specific questions: (1) How does
availability verification as a condition for price-matching affect the value of the
guarantee for consumers and retailers? (2) What are the market conditions that can
extend the coverage of price-matching guarantees to manufacturers, and does this
wider coverage necessarily benefit consumers?

We find that the availability condition affects the equilibrium decisions and retail
performance in completely different directions based on what factors customers
take into account while making store choices. In particular, availability-contingent
PMGs favor customers and decrease retail profits if customers pay attention to
the verification of availability clause. In contrast, availability-contingent PMGs
favor retailers and increase their profits while decreasing the consumers’ surplus
if customers fail to recognize the risks clause. In light of our findings, we conjecture
that retailers adopt availability contingent PMGs when they think the majority of
their customers are inattentive, i.e., they somehow ignore the possible consequences
of the availability clause while making store choices.

The most interesting finding is that even though the verification of availability
is seen to be a hassle for customers, it can indeed be beneficial for them if they
are aware of the possibility of product unavailability and the effects thereof while
making store choices. Such verification has pro-competitive effects since it increases
consumers’ surplus.

We also show that offering a price-matching guarantee is not beneficial and is not
the equilibrium strategy in a traditional dual chain between a retailer and a supplier,
even under conditions at which competing retail channels (non-dual channel) would
benefit from price-matching.

Consequently, managers should be mindful of the fact that offering a price-
matching guarantee is not profitable and is not the equilibrium strategy in industries
where the negotiation power in pricing lies in the upper echelons of the value chain.
On the contrary, a shift in the pricing power toward lower echelons, in particular to
the retailer, may turn PMGs into a profitable strategy.

In a traditional chain, offering a price-matching guarantee has adverse conse-
quences for the supplier. Promising to match the price of the retail channel limits the
supplier’s ability in optimally allocating the demand between the two channels. In
the absence of a price-matching guarantee, the supplier, through the direct channel
and wholesale prices, can transfer demand from one channel to another. Our analysis
shows that, for the supplier, the benefits of allocating the demand between the
two channels are higher than the benefits of offering a price-matching guarantee.
Offering a price-matching guarantee in a traditional chain proves to be detrimental
for the retailer. If the retailer offers price-matching, then the supplier sets the direct
channel price equal to the wholesale price. The retailer is then left with zero profit
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margin since it cannot charge more than the direct channel price (which is equal
to the wholesale price) because of price-matching. Therefore, the retailer does not
offer a price-matching guarantee in a traditional chain.

Offering a price-matching guarantee allows the supplier to attract demand from
the retail channel to the direct channel. In a retail dominant chain, the supplier
has limited influence on the pricing of the retail channel and on the demand
distribution across the two channels. Consequently, the supplier benefits from
attracting customers to the direct channel via a price-matching guarantee. We
show that, in a retail dominant chain, all possible outcomes (both parties offer
price-matching guarantees, neither offers, only the retailer offers, and only the
supplier offers) are possible at equilibrium, depending on the degree of vertical and
horizontal differentiation between the retail and direct channels. Offering a price-
matching guarantee, in this case, benefits the retailer and the supplier by softening
the intensity of price competition. We also show that, under the condition of both
parties offering price-matching, the consumer surplus is reduced compared to the
no price-matching guarantee scenario.

A potential future research direction is to investigate the effects of PMGs from
the supplier’s point of view. Conventional wisdom suggests that suppliers enjoy
enhanced competition between retailers because they would lead to lower prices
and increase demand. Simple price-matching policies offered by retailers, however,
inflate retail prices and decrease order quantity and, therefore, may not be the
desired strategy for a supplier. On the other hand, higher retailer prices, via price-
matching, may allow the suppler to increase its wholesale price. In addition, as we
have shown in this paper, issues such as verification of availability and the extent
of channel coverage as a price-matching condition changes the nature of interaction
between supply chain members. Clearly, this stream of research can benefit from
the construction of a model framework with active suppliers via endogenizing the
decisions of upstream members in a distribution channel with competing retailers
and manufacturers in the context of price-matching guarantees.
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Chapter 9
Collaborative Micro-Retailing in
Developing Economies

Luyi Gui, Christopher S. Tang, and Shuya Yin

Abstract In many developing countries, micro-retailers in remote rural places
struggle to survive due to high inventory replenishment costs caused by lack of
efficient infrastructure and distribution networks. Consumers, in turn, suffer from
higher prices and limited accessibility of products provided by these micro-retailers.
Some of these products are necessities, including food or medical items. In some
cases, micro-retailers are the only sources for consumers to obtain these products.
In order to help micro-retailers and the communities they serve, NGOs have
been exploring different approaches aiming to coordinate the retailers’ inventory
replenishment strategy. This chapter explores two major types of collaborative
strategies observed in practice, and studies their welfare implications for micro-
retailers and local consumers. One strategy is based on an “open” cooperative
where participating retailers jointly replenish inventories and share the travel cost
incurred. The other strategy introduces an intermediary “non-profit” wholesaler who
will consolidate retailers’ orders and replenish on their behalf under a low service
charge. The study unveils several key trade-offs associated with these collaborative
strategies. In particular, when retailers’ market entry is controlled and regulated,
the cooperative strategy always leads to Pareto improvement. That is, retailers’
profit improves and consumers are also better off. However, establishing a non-
profit wholesaler improves retailers’ profit at the expense of consumer welfare. This
trade-off can be mitigated when retailers can freely enter the retail market. That
is, the wholesaler strategy also leads to Pareto improvement under some general
conditions. We further show that the cooperative strategy benefits the consumers
more, while the non-profit wholesaler strategy is more effective in improving
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retailers’ profit and encouraging their market participation. We discuss the policy
implications of these trade-offs for the deployment of collaborative replenishment
for micro-retailers in practice.

Keywords Micro-retailers · Developing economies · Collaborative
replenishment

9.1 Introduction

9.1.1 Micro-Retailing in Developing Countries

In developing countries, especially in remote and poor rural areas, the “last mile
distribution” of life necessities such as food, water, grocery items, and medical
products is oftentimes managed by small family owned stores or street carts known
as the “micro-retailers.” These retailers typically have less than four employees,
stock a small selection of goods, and operate with a low monthly turnover, typically
less than $2000 a month (Nieuwoudt 2015). Examples of micro-retailers are sari-sari
stores in the Philippines and Kirana stores in India. They operate in locations close
to the neighborhood and the villages, selling a variety of items such as small packets
of snacks, cold drinks, cigarettes, small sachets of shampoos, and simple over-the-
counter drug tablets. Many stores are simply opened inside the owners’ homes, and
many micro-retailers set up movable stands and travel through the community.

Micro-retailers play an important role for the economic and social development
of the local area. First, they provide the daily needs of rural residents that cannot
access formal markets due to remoteness and the lack of modern transportation
infrastructure. For example, in India, 80% of the villages are not connected by
well-constructed roads (Kumar and Gogoi 2017), and “68% of the rural market
still lies untapped (by formal distribution channels) primarily due to inaccessibility”
(Neuwirth 2012). In those areas, micro-retailers are indispensable. It is estimated
that there are four million micro-retailers in 627,000 villages in India (Kumar and
Gogoi 2017). In Africa, the distribution of medical products heavily relies on small
private drug retailers in rural areas (Goodman et al. 2004; Yadav 2013). Second,
micro-retailers can provide additional services such as phone and Internet access,
card games and Karaoke, even coin laundry and haircut. Hence, these small stores
often act as the social, communication, and recreational center of the community
served. Third, micro-retailing brings in additional money for the store owners. It
is considered a major component of the non-farm economy in poor rural areas and
an important way to create jobs and business opportunities (International Fund for
Agricultural Development 2001).

Despite the importance of micro-retailing in developing economies, micro-
retailers earn meager profits and operate under prohibitive operating constraints.
First, the micro-retailing sector is highly fragmented, and individual retailers have
no bargaining power to negotiate better wholesale prices. Second, in the absence
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of formal distribution channels, micro-retailers have to travel afar by themselves to
replenish stocks. For example, private drug retailers in the rural areas of Tanzania
are reported to travel 150–400 km with few paved roads for replenishment from
suppliers in a city (Goodman et al. 2004). This results in a high travel cost burden
(including the imputed cost of time, labor, and inconvenience) on micro-retailers.
Third, micro-retailers are typically cash-strapped and have no access to financial
support (such as loans). Neither do they have the knowledge, technology support, or
even enough storage space, to implement sophisticated strategies such as inventory
planning. In addition, micro-retailers may need to survive in a harsh environment
where they suffer from stealing and harassment from criminal groups. Far away
from formal markets and distribution channels, oftentimes, they also face unfair
competition from counterfeit products that are fake or unauthorized replicas of the
genuine products and are sold at much cheaper prices.

It is evident that the survivalist model of micro-retailing in developing economies
is in sharp contrast to the rocket-science model of modern retailing that the
literature has concentrated on. The modern retailing literature is featured by big,
powerful retailers, such as Walmart and Amazon that are equipped with state-
of-the-art logistics/operational management capabilities and have access to good
resources. Hence, the challenges faced by micro-retailers motivate a rich set of
new research avenues. From an operational point of view, a major question is
how to improve replenishment efficiency for micro-retailers. In the literature,
replenishment/distribution channel strategies have been extensively discussed. For
example, a widely studied strategy is the vendor-managed inventory (VMI) model
where a manufacturer jointly replenishes orders at multiple retailers (Lee et al.
2000; Çetinkaya and Lee 2000; Mishra and Raghunathan 2004). Another popular
strategy is the group-buy initiative among competing retailers (e.g., Chen and Roma
2011). However, despite the ample discussion on replenishment strategies, these
studies focus on developing sophisticated solutions that may not be applicable to
the resource-constrained micro-retailers. For example, the multi-period inventory
planning model is often used for well-established and operationally strategic
retailers that are quite different from the micro-retailers considered in this chapter.
Moreover, the literature on replenishment strategies typically takes the perspectives
of profit-maximizing entities, e.g., the manufacturer in the VMI model, whereas
social benefit metrics such as consumer welfare and retailer’s market participation
are ignored. Another example is the stream of research that studies distribution
channel structure of suppliers. This stream focuses on “direct sell” strategies of
suppliers, where they establish their own distribution channel to vertically compete
with common retailers, aiming at obtaining a higher profit (e.g., Cattani et al. 2004;
Tsay and Agrawal 2004). However, such a “value extracting” perspective may
not be desirable in the context of developing economies. In particular, inefficient
replenishment in micro-retailing creates a vicious cycle: poor micro-retailers cannot
earn much and few of them can survive in the market. This leads to higher retail
prices that poor consumers cannot afford, which in turn further hurts micro-retailers
profits (International Fund for Agricultural Development 2001; OECD 2013). To
break this cycle, merely focusing on profit-maximization of micro-retailers is not
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enough, and a win–win solution that improves both retailer profit and consumer
welfare (e.g., via encouraging market participation and reducing retail price) is
highly beneficial. In other words, the developing economy context calls for a “value
creation” standpoint, an important ingredient of the emerging stream of research on
socially responsible operations at the bottom of the pyramid, e.g., those that develop
sustainable energy and transportation solutions (e.g., Uppari et al. 2017; McCoy
and Lee 2014; Chen et al. 2017). Yet similar research on micro-retailing remains
limited. In this chapter, we provide an example that analyzes the use of collaborative
strategies in rural areas to help micro-retailers reduce travel cost associated with
replenishment trips and at the same time, improve consumer welfare.

9.1.2 Collaborative Replenishment Strategies

As aforementioned, high travel cost is a major burden for micro-retailers that hinders
the development of remote rural areas. This has motivated various NGOs, non-profit
organizations, and social enterprises to develop novel and effective replenishment
strategies for micro-retailers. Many of these strategies involve encouraging collab-
oration among multiple micro-retailers to replenish together and reduce the travel
cost. Two major examples stand out in practice: purchasing cooperatives and non-
profit wholesalers. In a purchasing cooperative, participating retailers replenish their
stocks jointly and share the travel cost. Take ShopRite, a major retailer cooperative
in the USA, as an example. The ShopRite cooperative “buys, warehouses and
transports” products through its own procurement arm, the Wakefern Food Corp.,
on behalf of its fifty members, all of which are individually owned and operated
local stores (ShopRite 2017). The cooperative strategy has a long history in the
retailing sector and is known for reducing purchasing and transportation costs. In
Europe, purchasing cooperatives among independent retailers have become some
of the largest organizations in retail sectors, e.g., Rewe and Edeka in Germany,
Intermarche, E. Leclerc and System U in France, and El Corte in Switzerland (von
Ravensburg 2011). Purchasing cooperatives have already been proven to be effective
in developing countries, in particular, among individual farmers in the agriculture
sector (e.g., Rabobank Foundation, Kilimanjaro Native Cooperative Union) and
among individual local craft makers (e.g., Machakos District Co-op Ltd.). There
also exist ample interest and opportunities to apply this concept to micro-retailing,
according to the International Labor Organization (von Ravensburg 2011).

Next, the non-profit wholesalers are a variation of common wholesaler services.
They serve as replenishment hubs by transporting goods to places that are easily
accessible to micro-retailers. These wholesalers are established to help the rural
population, and therefore charge low wholesale prices, just enough to sustain their
operations, instead of profit maximization. Under this model, participating retailers
“implicitly” share the travel cost by paying the surcharge in the wholesale price that
jointly covers the travel cost. It is different from the purchasing cooperative strategy
because the wholesaler is an independent intermediary. In practice, non-profit
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wholesalers are mostly concentrated for medicines and drugs, and are typically
geared towards health care facilities, e.g., Action Medeor and MEDS that operate in
African countries such as Kenya, Uganda, and Tanzania (MEDS 2017). In India,
the Delhi Cooperative Societies Act has led to the establishment of the Delhi
Consumer’s Cooperative Wholesale Store Ltd that supplies consumer goods to
affiliated stores and to the public at low prices (Govt. of NCT of Delhi 2017). In the
private sector, Tata Global Beverages Ltd has launched a non-profit project called
“Gaon Chalo Abhiyan” (Let’s Go To the Villages) that provides tea products to
local retailers at low costs in order to yield an attractive margin to shopkeepers (Tata
Trust 2016). Some for-profit wholesalers have also organized low-price wholesaling
services, tailored for remote rural areas. Examples include the rural distribution
service provided by Drishtee, and the Hindustan Lever Limited’s (HUL) project
“Shakti” (Rangan and Rajan 2007). It is evident through these examples that non-
profit wholesaler can be an effective way to help micro-retailers to overcome the
travel cost hurdle that disconnects them, and therefore their rural communities, from
the formal market.

In this chapter, we analyze the economic implications of the purchasing cooper-
ative and the non-profit wholesaler replenishment strategies for remote rural areas
in developing countries. The analysis is based on stylized operations management
models that capture (1) the impact of travel cost on micro-retailers’ profit and their
survival in a resource-constrained operating environment, (2) market participation
decisions of micro-retailers and the competition among them, (3) consumer choice
among multiple micro-retailers and the resulting consumer welfare implications.
The goal of the analysis is threefold. First, it outlines the key economic mechanism
underlying these two strategies. Second, it enables an equilibrium study that
quantifies the effectiveness of these strategies in improving micro-retailer profit and
consumer welfare. Third, it helps identify market factors that critically affect the
relative performance between the two strategies and, accordingly, provides policy
insights as to the choice and design of collaborative replenishment programs in rural
areas in developing countries.

The rest of the chapter is organized as follows. Section 9.2 introduces models
of the two collaborative strategies discussed in Sect. 9.1.2 and also the benchmark
strategy where there is no coordination among the micro-retailers. Section 9.3
analyzes the market equilibrium under these strategies and presents a comparative
study. We conclude the chapter with managerial insights in Sect. 9.4.

9.2 Model Description

In practice, there may be multiple micro-retailers that serve the same community.
Hence, we consider n micro-retailers in the market, each selling a product. We
note a few key operational features of micro-retailers in practice. First, these
retailers are typically substitutable because they sell similar products and use
similar sales format, yet they also differentiate in certain ways. For example,
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micro-retailers often carry different brands of similar types of products, such
as packaged snacks. They may also offer different services such as phone and
Internet access, card games/Karaoke, and even services such as coin laundry, water
refilling, and haircut—to attract customers and improve store demand. Second,
micro-retailers are symmetric in many other aspects such as size, budget, and cost
structure (Prahalad 2006). Third, micro-retailers usually compete on price. These
retailers have the pricing power as they often have close connections with the local
community, e.g., via services such as home delivery and store credits to customers
(Fransoo et al. 2017) and act as “local monopolies.” (There are also cases where
micro-retailers act as price takers. We discuss those cases in a quantity competition
extension in Sect. 9.4.) In view of these observations, we assume that, under any
given inventory replenishment strategy, retailers set their own retail prices, denoted
by p = {p1, p2, . . . , pn}. Customers then decide on which retailer they will buy
from and their purchasing quantities. This determines the demand of each micro-
retailer, which we model by a demand function d = {d1, d2, . . . , dn}. We follow
a well-established framework in the economics literature that models consumer
choices under price competition (e.g., Anderson et al. 1992; Dixit 1979; Singh
and Vives 1984). In this framework, a representative consumer decides to buy the
amount di from retailer i, for each i ∈ {1, 2, . . . , n}, in order to maximize its
overall welfare, given the retailers’ prices and their substitution levels. A widely
used consumer welfare function is expressed by

U(p, d, n) =
n∑

i=1

(
di − d2

i

2

)
− τ

n∑

i=1

di

( n∑

j=1,j =i

dj

2

)
−

n∑

i=1

pidi, (9.1)

where the parameter τ ∈ (0, 1) measures the substitution level between any two
products sold in the market. Intuitively, for example, where there are two retailers i

and j in the market, retailer i is τ -substitutable to retailer j if a unit price change
at j results in a demand change at i that equals the fraction τ of that caused by i’s
own unit price change. The welfare function (9.1) will be used later to evaluate the
consumer welfare under each replenishment strategy, which is one of the dimensions
based on which we evaluate the performance of these strategies.

Consumer welfare maximization based on function (9.1) yields the following
demand function:

di(n, p) = a − bpi + θ

n∑

j=1,j =i

(pj ), (9.2)

where a = 1/[(n − 1)τ + 1], b = [(n − 2)τ + 1]/[(1 − τ)((n − 1)τ + 1)] and
θ = τ/[(1 − τ)((n − 1)τ + 1)].

Knowing the demand function above, micro-retailers engage in price competition
in the market to maximize their own profits that are contingent on the inventory
replenishment strategy implemented. For example, without collaboration, individual
retailers make their own independent trips to replenish inventories. We call this
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case the independent strategy, and use it as the benchmark when evaluating the
performance of the two collaborative replenishment strategies. Note that when a trip
made to the supplier site for inventory procurement, a fixed travel cost, denoted by
K , and a variable unit procurement cost, denoted by c, are incurred. Since micro-
retailers, in practice, share similar cost structures, we assume that these costs are
the same for all retailers in our model. Moreover, for tractability, we also assume
that the fixed travel cost remains the same, regardless of whether the trip is made
by individual retailers, the purchasing cooperative, or the non-profit intermediary
(wholesaler). The justifications for this simplification are discussed in Gui et al.
(2019). That paper also extends the fixed travel cost to more general structures that
increase in the number of participating retailers, since a bigger group of retailers
might require a bigger vehicle to transport goods and hence incur a higher operating
cost. Under these assumptions, each retailer i that replenishes independently has a
profit function that can be expressed as follows:

Πi(p, n) = (pi − c) · di − K, (9.3)

where the demand function is given in Eq. (9.2) above. Since individual retailers
simultaneously set selling prices, the Nash concept is adopted to characterize the
prices in equilibrium.

Collaborative replenishment strategies help reduce the retailers’ travel cost.
Essentially, under the open cooperative strategy, only one replenishment trip is
needed to the supplier site for all member retailers’ procurement needs and the
fixed travel cost is incurred once. In practice, that travel cost depends on factors
such as the number of participating retailers, the actual location of these retailers,
and how routing choices are made. In this study, we assume that the travel cost to
commute between retailers is negligible, compared to that from where these retailers
are situated in the local remote community to the supplier site that is typically in
large cities. This assumption is supported by the fact that the remoteness of micro-
retailers from the main market where the suppliers are located is the major cause of
their travel cost burden. Under this assumption, the travel cost that the cooperative
incurs can be modeled as K as well. We assume that this fixed cost is equally shared
among the members of the cooperative. This can be justified by the symmetry
among the individual retailers due to the similarities of their business scales and
the packaged product types (of possibly different brands) that they carry (Prahalad
2006). As a result, each retailer i’s profit function can be expressed as follows:

Πi(p, n) = (pi − c) · di − K

n
. (9.4)

Similarly, the Nash concept is adopted to characterize the prices in equilibrium.
Under the non-profit wholesaler strategy, the wholesaler procures products on

behalf of all the retailers and incurs the fixed travel cost K . An important feature
of a non-profit wholesaler that differentiates itself from for-profit ones is that it
aims to help local retailers and thus typically charges them a cheaper wholesale
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price, mainly to cover operational expenses such as the travel cost incurred in
replenishment trips. To capture this feature, we assume in this study that the non-
profit wholesaler charges a price premium on top of the unit purchasing cost c, just
enough to break even and cover the travel cost K . We denote the resulting unit
wholesale price as w. Based on this wholesale price w, individual retailers set their
selling prices accordingly. The interaction between the wholesaler and the retailers
is formulated as a two-stage Stackelberg game, where the wholesaler is the game
leader and the retailers are the followers. Backward induction is adopted to solve for
the equilibrium decisions. Specifically, in stage 2, given w, each retailer i’s profit
function can be expressed as follows:

Πi(p, n,w) = (pi − w) · di . (9.5)

In this stage, the Nash approach can again be applied to derive the retailers’
equilibrium selling prices as functions of the wholesale price, pi(w).

In stage 1, in anticipation of retailers’ prices pi(w), the wholesaler sets the
wholesale price to break even and just cover the fixed cost incurred during the
procurement process. Technically, the wholesale price, w, is set to achieve the
following equality:

(w − c)

n∑

i=1

[di(pi(w))] = K. (9.6)

The extension of the model to the case where the wholesale price is determined for
a for-profit wholesaler can be found in Gui et al. (2019).

9.3 Model Analysis and Comparison

In this section, we first analyze the retailers’ equilibrium prices that will subse-
quently facilitate the derivation of their individual profits in equilibrium and the
consumers’ overall welfare. The quantification of these terms would enable us
to compare the three replenishment strategies from the perspectives of both the
retailers and the consumers. The following result presents the retailers’ selling prices
in equilibrium. A detailed proof is available in Gui et al. (2019).

Proposition 9.1 (Equilibrium Retail Prices) In a market with n competing micro-
retailers:

(1) With either the independent replenishment strategy or the open purchasing
cooperative, the equilibrium prices are as follows:

p(n) = c + (1 − c)(1 − τ)

(n − 3)τ + 2
. (9.7)
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(2) With the wholesaler strategy, the equilibrium prices are as follows:

p(n) = w(n) + (1 − w(n))(1 − τ)

(n − 3)τ + 2
, (9.8)

where

w(n) = 1

2
(1 + c − √

(1 − c)2 − 4L(n)), and

L(n) = K[(n − 3)τ + 2][(n − 1)τ + 1]
n[(n − 2)τ + 1] .

Based on the equilibrium prices identified in Proposition 9.1, the retailers’
equilibrium profits and the overall consumer welfare (calculated by Eq. (9.1)) can be
subsequently computed. We denote by Π∗

i (n) the retailer’s equilibrium profit when
there are n retailers in the market.

Proposition 9.1 provides a few insights. First, we observe that, regardless of
the inventory replenishment policy, the retailers always adopt a price markup on
top of the unit purchasing costs (or the unit wholesale price in the non-profit
wholesaler model) that they are charged. Second, it is straightforward to note that
the cooperative strategy does not change the pricing game among retailers in the
independent model and it only reduces the individual retailers’ fixed travel cost from
K in the independent model to K/n. So, the equilibrium prices in the independent
and the cooperative models are identical.

Compared to the cooperative strategy, the wholesaler strategy presents a more
sophisticated way to reduce the travel cost for the participating retailers and hence
introduces model complexity which is reflected by its equilibrium price outcome.
Specifically, note that, in equilibrium, w(n) ≥ c holds, which implies that the
retailers pay a higher unit price under the wholesaler model than the regular unit
purchasing cost under the cooperative and the independent strategies. We conclude
that, even though the wholesaler (as an intermediary) is not-for-profit, its presence in
the system increases the retailers’ variable cost which we show later leads to higher
retail prices.

Based on the equilibrium price characterization under different replenishment
strategies in Proposition 9.1, we are now ready to evaluate the effectiveness of the
two collaborative strategies in improving the retailers’ profit and consumer welfare
relative to the independent one. Various examples discussed in the introduction
indicate that there are two practical settings with different setup complexities that
could affect our comparative study. One setting is where government authorities
regulate a fixed number of micro-retailers in the market. From a modeling perspec-
tive, this implies that the number of retailers, n, is exogenously chosen, typically
to guarantee a certain level of individual retailers’ profit. This setting is referred to
as the regulated market. The other setting is where individual retailers can freely
enter or exit the market as long as their profits meet a reservation value (i.e., the
lowest profit that a micro-retailer is willing to stay in business). In other words, the
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value of n is endogenously determined through an individual rationality constraint
on retailers’ profit. This setting is referred to as the unregulated market. In what
follows, we will separately analyze these two practical settings. For consistency, we
assume that in both settings, the retailers’ reservation value is v (≥ 0) above which
they are willing to enter or stay in the market.

9.3.1 Regulated Market

Government may regulate the market entry of retailers through business licenses.
For example, in many developing countries, such as China, the Philippines, or India,
micro-retailers that sell food, tobacco, or liquor products are required to apply for
specific permits before doing business and these permits can be strictly controlled
(e.g., Shanxi Province Administration for Industry and Commerce 2007). Typically,
government monitors the number of such permits (and subsequently the number of
retailers in the market), so that the survival (or the participation) of the retailers
can be ensured, i.e., their profits are at least equal to or above their reservation
value v. Hence, the analysis in this section assumes that the model parameters
(τ, c,K) meet the condition that the retailers’ equilibrium profit under any of the
three replenishment strategies is guaranteed to be not smaller than v. Proposition 9.2
summarizes the results from the comparison between the three strategies in terms of
their equilibrium prices, retailers’ profits, and consumer welfare.

Proposition 9.2 (Comparison of the Three Strategies in the Regulated Market)
Assuming that there are at least two retailers in the market, the following results
hold.

(1) Retail Prices: The wholesaler strategy leads to the highest equilibrium prices
compared to the cooperative and the independent strategies, which lead to the
same prices.

(2) Retailers’ Profits: Relative to the independent strategy, both cooperative and
wholesaler strategies improve retailers’ profits. Moreover, the wholesaler strat-
egy benefits the retailers more than the cooperative strategy, if the substitution
level τ is higher than a certain threshold (indicating that retail competition in
the local area is sufficiently strong).

(3) Consumer Welfare: The wholesaler strategy leads to the lowest consumer
welfare, compared to the cooperative and the independent strategies, which lead
to the same level of consumer welfare.

Proposition 9.2 provides a set of useful insights about the economic implications
of collaborative replenishment strategies. In terms of the retail prices, it is not
surprising to observe that the wholesaler strategy leads to the highest retail prices in
equilibrium. This is due to the fact that, under such a strategy, the retailers need to
pay a higher wholesale price in equilibrium than the unit purchasing cost that they
need to pay under the independent or the cooperative strategy (see the discussion
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following Proposition 9.1). So, the retailers transfer some of this cost increase to
their customers via higher retail prices. This effect subsequently leads to different
retailer profit and consumer welfare implications of these replenishment strategies,
which we discuss in the next paragraph.

In terms of the retailers’ profits, relative to the independent strategy, the
cooperative strategy benefits the retailers since it keeps their gross profits (without
considering the fixed cost) at the same level, while reducing their individual fixed
costs from K to K/n. On the contrary, the wholesaler strategy reduces the retailers’
gross profits (due to increased retail prices) but relieves them from paying the
fixed travel costs, and the net impact improves retailers’ profit as compared to that
in the independent strategy case overall. The question now is which one of the
two cooperative strategies is more effective in improving the retailers’ profits. To
facilitate this comparison, let us first transform the retailers’ profits in the wholesaler
model as follows: We substitute the equilibrium retail prices in Eq. (9.8) in the
retailers’ profit functions in Eq. (9.5) and apply the wholesaler’s break-even function
in Eq. (9.6), which yields an alternative retailer profit function under the wholesaler
strategy:

Πi(p, n) = (pi − c) · di − K

n
. (9.9)

This transformation implies that the wholesaler model essentially enables the
retailers to “share” the fixed travel cost indirectly, just like in the open cooperative
model. Hence, the comparison of the wholesaler and cooperative models reduces to
the comparison of the retail prices and the realized demands in these two models.
On one hand, Proposition 9.2(1) indicates that the wholesaler model leads to higher
retail prices, and subsequently, a higher unit profit margin. On the other hand, it
also implies that the cooperative strategy has an advantage on inducing higher
demand (due to lower retail prices). As the degree of retail substitutability increases,
the wholesaler model’s profit margin advantage is amplified, while the cooperative
model’s demand advantage is reduced. As a result, the cooperative strategy works
more effectively in improving the retailers’ profits when the substitution level and
the competition intensity in the market are low. When retailers compete more
strongly, the wholesaler strategy will be preferred by the retailers. This explains
Proposition 9.2(2).

From a practical point of view, Proposition 9.2(2) implies that retailers would
favor the open cooperative framework if they are highly differentiated via, e.g.,
selling different products, or being located with a relatively long distance. Other-
wise, they would prefer a non-profit intermediary. Further analysis in Gui et al.
(2019) provides a complete characterization of the sufficient lower bound on the
substitution level τ , under which retailers’ preferences switch. It is shown that this
lower bound is no larger than 0.3 and decreases quickly as the number of retailers in
the market increases. For example, in India’s rural market, where a village is served
by six micro-retailers on average (Kumar and Gogoi 2017), the wholesaler strategy
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leads to higher retailer profit, as long as the substitution level is no smaller than
0.02, a practically plausible condition. This discussion indicates that the wholesaler
strategy is likely to be preferred by the micro-retailers in practice.

Finally, in terms of the consumer welfare, the cooperative and the independent
strategies are again equivalent because they lead to the same equilibrium retail
prices. However, since the wholesaler strategy gives rise to the highest prices among
the three strategies, it generates the lowest consumer welfare level and may be the
least preferred from the perspectives of local consumers.

Following the discussions above, it is reasonable for us to conclude that in
a regulated market, for the retailers, collaborative replenishment via a non-profit
wholesaler is typically more beneficial than that via an open cooperative. However,
the introduction of an intermediary wholesaler is detrimental to the consumer
welfare, even if it is not-for-profit. This trade-off implies that the selection of the best
collaborative replenishment strategy needs to factor in the policy makers’ priorities.
For example, in the pharmacy market, where the number of drug retailers is strictly
controlled, the policy maker needs to be mindful that the wholesaler model can
benefit the retailers the most, but it undermines the consumer welfare. In situations
where the consumer welfare is the top concern, the alternative cooperative strategy,
where a purchasing cooperative is formed among the existing retailers, should be
considered and encouraged.

9.3.2 Unregulated Market

In the previous section, we have examined the effectiveness of collaborative
replenishment strategies in improving retailers’ profit and consumer welfare in a
regulated market. Note that the regulated market setting applies to situation where
the number of retailers in the market is strictly controlled by the government
for a variety of reasons (e.g., Govt. of NCT of Delhi 2017; MEDS 2017). For
example, in the case of micro drugstores, market entry restriction may be imposed
to mitigate market competition so as to ensure the survival rate of these stores
and hence to maintain a sustainable market. The market could also be regulated to
facilitate quality control (see the discussion in the introduction section). However,
there are many cases in practice where retailers can freely enter or exit the market
depending on their own incentives. In particular, they would enter the market if they
obtain a profit above their reservation value (e.g., the profit that could be achieved
from other business alternatives, i.e., the opportunity cost for these retailers). On
the other hand, existing retailers may choose to exit the market if there are too
many competing retailers and their profit falls below the reservation value. In the
free market entry setting, the number of retailers in the market is endogenously
determined in equilibrium by the operating environment characterized by our model
parameter specifications. The free market entry setting applies to situations where
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the retailing market is loosely monitored by the government, or where the rules and
regulations that govern the market entry of the retailers are weakly enforced, as it
is the case in many developing countries. There could also exist situations where
the government intends to introduce more competition in the retailing market in
the hope of bringing down retailing prices and benefiting the consumers. Allowing
retailers’ free market entry could be an applicable strategy to that end.

In the unregulated setting, it is natural for us to assume that the individual retailers
will first decide whether or not to enter the market by taking into consideration their
reservation profits. We model this decision as stage 1 of the game. After the number
of participating retailers is determined, they would subsequently engage in price
competition by setting their retail prices simultaneously and then their equilibrium
profits will materialize. We model these events in stage 2 of the game. We adopt
the classic backward induction to solve the equilibrium solution to the game. We
first solve for the retailers’ equilibrium profit functions Π∗

i (n), assuming there
are n participating retailers following the analysis discussed in Sect. 9.3. Next, we
calculate the equilibrium value of n, defined as the highest possible integer value of
n such that

Π∗
i (n) ≥ v. (9.10)

We then compare the three replenishment strategies, based on the equilibrium
number of retailers they induce in the market.

Note that in the unregulated market, there is no need to compare the individ-
ual retailers’ equilibrium profits, since, given how the equilibrium n is defined,
the retailers’ profits will equal their reservation values in equilibrium under all
strategies. However, the free market entry setting gives rise to another welfare
metric, i.e., the number of participating retailers in the market in equilibrium. The
number of participating retailers in equilibrium can be an important performance
measure of the micro-retailing market for developing economies. This is because
more participating retailers imply more sources of additional income for the poor
rural people and create business opportunities for the non-farm economy in the
local area, which could be crucial for developing countries (International Fund
for Agricultural Development 2001). Hence, in the unregulated market case, we
also compare the equilibrium number of retailers in the market under the three
replenishment strategies considered. Unfortunately, it is quite challenging to derive
a closed-form solution to Eq. (9.10), especially in the wholesaler model. This
is due to the complicated form of the best response functions of the retail and
wholesale prices, given the number of participating retailers in the market (see
Proposition 9.1(2)). This in turn creates difficulty in applying the floor operation to
the solution to Eq. (9.10) to derive the integer value of the number of participating
retailers. Good news is that part of the comparison can be done analytically based on
an approximation method proposed in Gui et al. (2019). That is, the direct solution
of n to inequalities (9.10), Π∗

i (n) ≥ v, is used in the comparison. Accordingly, the
following result can be derived.
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Proposition 9.3 (Comparison of the Three Strategies in the Unregulated Mar-
ket) When the retailers can freely enter or exit the market, we have:

(1) Number of Participating Retailers: The open cooperative strategy always leads
to more retailers participating in equilibrium than the independent strategy.
Among all three strategies considered, the wholesaler strategy leads to the
highest number of retailers in the market if

(1 − τ)K2 + (1 + τ − τ 2)Kv + τv2

(1 − τ)K + τv
≤
(

1 − c

2

)2

. (9.11)

(2) Retail Prices: Among all the three strategies, the open cooperative strategy
leads to the lowest retail prices in equilibrium.

(3) Consumer Welfare: The open cooperative strategy always leads to higher
consumer welfare in equilibrium than the independent strategy. Among all the
three strategies, the cooperative strategy leads to the highest consumer welfare
if condition (9.11) holds.

Proposition 9.3(1) indicates that, relative to the base strategy, the open coop-
erative strategy always encourages more retailers to enter the market. This is not
surprising since the cooperative strategy reduces the retailers’ travel cost from K to
K/n. However, it is not trivial to observe that the wholesaler strategy can lead to
even more participating retailers than the open cooperative if condition (9.11) holds.
Hence, it is helpful to understand the implications of that condition in detail. Note
that in order to ensure a reasonable market environment, we set feasible ranges for
model parameters, K , c, and v, so that there is at least one retailer who would be
willing to enter the market when replenishing independently. Under this assumption,
it can be shown that condition (9.11) holds in more than 85% of the feasible ranges
of the model parameters. In the extreme case when τ → 1 (i.e., retailers are
fully substitutable) or when τ → 0 (i.e., retailers are completely differentiated),
condition (9.11) always holds. In addition, if the retailers’ reservation profit is set at
a zero level (e.g., when there are no alternative income options for the micro-retailer,
which can be true for the poor residents in some developing countries), condi-
tion (9.11) always holds as well. In all, this analysis indicates that condition (9.11)
is a practically plausible condition. Accordingly, it can be concluded that in general,
the wholesaler strategy is more effective in encouraging more retailers to participate
in the market. It is only when the reservation profit is sufficiently high or the fixed
travel cost is sufficiently large that the condition (9.11) may be violated, in which
case the open cooperative strategy may induce more participating micro-retailers.
This result is in line with Proposition 9.2(2), as both suggest that the retailers are
better off under the wholesaler strategy, compared to the cooperative strategy under
general conditions in both the regulated and the unregulated markets.

Propositions 9.3(2) and 9.3(3) leads to a number of implications. First, the open
cooperative strategy warrants the lowest retail prices among all the three strategies,
and accordingly leads to the highest consumer welfare when condition (9.11) is
satisfied. It is interesting to note that under the same condition, Proposition 9.3(1)
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indicates that the wholesaler model leads to the highest number of retailers in the
market (which also implies the highest total profit for all the retailers, nv). This
observation enriches the intuition obtained from the analysis of the regulated market.
That is, when retailers are allowed to enter and exit the market freely, the wholesaler
strategy continues to improve the retailers’ profit the most, whereas the cooperative
strategy continues to be the best for consumer welfare.

Second, Propositions 9.3(1) and 9.3(3) combined indicate that the cooperative
strategy is Pareto improving compared to the independent strategy. A natural
question is whether this holds true for the wholesaler strategy. To analyze this
question, recall that Proposition 9.2 demonstrates that in a regulated market, the
wholesaler strategy raises the retail prices and hence undermines the consumer
welfare relative to the independent strategy. However, how these effects may change
when retailers’ free market entry is permitted is unclear. So, it would be meaningful
to characterize the conditions under which the wholesaler strategy can be Pareto
improving in an unregulated market. On the other hand, as discussed right before
Proposition 9.3, it is difficult to obtain closed-form expressions for the retailer profit
and consumer welfare in equilibrium for the wholesaler strategy under free market
entry. To overcome that difficulty, the numerical study in Gui et al. (2019) shows a
number of observations regarding the comparison between the independent and the
wholesaler strategies.

First, for the set of instances where the number of participating retailers is higher
under the wholesaler strategy, the consumer welfare tends to be higher as well.
This positive correlation between the number of retailers and the consumer welfare
suggests that the free market entry in the unregulated market can mitigate the supply
chain inefficiency caused by the introduction of the intermediary wholesaler in the
regulated market where the number of retailers is fixed.

Second, we observe that the wholesaler strategy improves both the number of
participating retailers and the consumer welfare, relative to the independent strategy
when K + v is small, K/v is large, and τ is small. Indeed, following the discussion
on Proposition 9.3, in particular, condition (9.11), we understand that the smaller
values of K +v and τ yield a higher number of participating retailers in equilibrium
under the wholesaler strategy. In addition, it can be shown that for any given set of
(c, τ,K +v), the equilibrium number of retailers in the market under the wholesaler
strategy is increasing in K/v. This explains why the conditions under which the
wholesaler strategy is Pareto improving hinges on the parameter specifications that
are previously discussed.

9.4 Discussions

In the previous sections, we have made a number of simplifying assumptions. In this
section, we will briefly discuss the implications of relaxing two main assumptions:
the nature of retail competition and the uncertainty in demand.
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First, we assumed that the micro-retailers are the price-setter and are engaged
in price competition in the market. In practice, many of these micro-retailers
have strong bounds with their local communities (Fransoo et al. 2017), which
differentiates them from each other and grants them local monopolist power.
However, if these micro-retailers sell commodity type of products which are very
similar and they are located closely to each other, then it might be more reasonable
to assume that the retailers engage in quantity competition. Our analysis of this
extension leads to the following observations on the impact of a different type of
retail competition (see Observations 2 and 3 in Gui et al. 2019, for details).

1. In the regulated market, the effect of the cooperative strategy on retailers’
retail prices, profits, and consumer welfare (relative to the independent strategy)
remains robust under either quantity or price competition. The positive impact
of the wholesaler strategy that improves retailer profit and its negative impact
that undermines consumer welfare under price competition is mitigated under
quantity competition. In some cases, the introduction of a non-profit wholesaler
may even benefit the consumers under quantity competition.

2. In the unregulated market, relative to price competition, quantity competition
encourages even more participating retailers in the market when either an open
cooperative is formed or an intermediary non-profit wholesaler is introduced
into the system. However, the impact of quantity competition on the relative
effectiveness between the two collaborative strategies is highly sensitive to the
specific operating parameters.

An important take-away from the above two observations is that the type
of market condition (regulated vs. unregulated) influences the implications of
quantity vs. price competition on the effectiveness of collaborative replenishment
strategies. In particular, in a regulated market the benefits of the wholesaler strategy
relative to the independent strategy are reduced when the retailers compete on
quantities instead of prices. This is because quantity competition gives retailers
more “monopolist” power than price competition if the number of competing
retailers is fixed (Singh and Vives 1984), and leads to a higher profit under
any replenishment strategy. Accordingly, Gui et al. (2019) show that quantity
competition and collaborative replenishment work as substitutes in improving
retailers’ profit. However, when retailers can freely enter the market, the benefits
of the cooperative or the wholesaler strategy relative to the independent strategy are
reinforced when retailers change from price to quantity competition. In that case,
quantity competition and collaborative replenishment turn out to be complements in
encouraging retailers’ market participation.

Second, we assumed so far that the demand is deterministic for individual retail-
ers. This setting is applicable to products with predictable and stable demand, e.g.,
everyday grocery items. For products such as drugs or medical items, uncertainty in
demand might be unavoidable which, in turn, raises the issue of possible mismatch
between demand and supply. Given this consideration, we revise our main model to
incorporate demand uncertainty for micro-retailers. For consistency with the main
model, the extension to demand uncertainty is conducted under the assumption
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that the retailers engage in price competition. This analysis yields the following
observations on the impact of demand uncertainty (see Observations 4 and 5 in Gui
et al. 2019, for details).

1. In the regulated market, the effect of the cooperative strategy on retailers’
prices, profits, and consumer welfare (relative to the independent strategy)
remains robust under demand uncertainty. However, similar to the quantity
competition case, the positive impact of the wholesaler strategy that improves
retailer profit and its negative impact that undermines consumer welfare under
price competition is mitigated when demand becomes uncertain.

2. In the unregulated market, the introduction of demand uncertainty would weaken
the effectiveness of the open cooperative or the wholesaler strategies in motivat-
ing more participating retailers in the market relative to the independent strategy.
The way this uncertainty changes the effectiveness of these two collaborative
strategies on consumer welfare is highly sensitive to the specific operating
parameters.

To intuitively understand the above findings, we note that according to Bernstein
and Federgruen (2005), for a given number of retailers competing in the market, the
uncertainty in demand leads to mismatch between demand and supply and hence
reduces retailer profit under any replenishment strategy. This poses an additional
challenge for the retailers to be better off via an intermediary player, and the benefits
of the wholesaler strategy (relative to the independent strategy) are weakened in the
presence of demand uncertainty. The same effect is also observed in an unregulated
market setting, with free entry through the equilibrium number of participating
retailers. That is, the wholesaler strategy can become less effective in encouraging
retailers to participate in the market when demand uncertainty is considered.

Contrasting the findings from these two major model extensions reveals the
following insight: Quantity competition exhibits a similar impact on the effec-
tiveness of collaborative replenishment strategies as demand uncertainty does in a
regulated market. However, they exert the opposite impact in an unregulated market.
This further characterizes the critical role of the market environment (regulated
vs. unregulated, form of competition, demand uncertainty) in determining the
effectiveness of collaborative replenishment strategies.

9.5 Conclusions

Without efficient infrastructure and distribution channels in rural areas of many
developing countries, poor retailers incur high replenishment costs. As such, either
poor micro-entrepreneurs not yet in the micro-retailing market cannot afford to
participate or existing micro-retailers’ on-going operations generate meager income.
Consequently, consumers’ product accessibility is hampered, micro-retailers’ earn-
ing potential is stagnant, and manufacturers’ growth in emerging markets is limited.
Motivated by different collaborative replenishment programs developed by social
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Table 9.1 Effect of cooperative replenishment strategies

Regulated market Unregulated market

Cooperative vs. independent Cooperative strategy benefits
retailers but does not change
consumer welfare.

Cooperative induces more
retailers in the market and
also benefits consumers.

Wholesaler vs. independent Wholesaler strategy benefits
retailers but undermines
consumer welfare.

Wholesaler induces more
retailers in the market and can
benefit consumers under
general conditions.

Cooperative vs. wholesaler Wholesaler is typically better
for retailers but cooperative is
better for consumers.

Wholesaler induces more
retailers but cooperative is
better for consumers under
general conditions.

enterprises and not-for-profit companies, we develop economic models to examine
the implications of two main types of strategies: (1) forming an open purchasing
cooperative among all participating retailers that coordinate their replenishment,
pooling their inventories and share cost; and (2) introducing a non-profit wholesaler
that procures on the retailers’ behalf under a low service charge. We analyze these
collaborative strategies against a benchmark case (called the independent strategy)
where individual retailers replenish on their own and no collaboration/coordination
exists. By examining the equilibrium outcomes associated with each of these inven-
tory replenishment strategies in both regulated and unregulated market settings, we
have obtained a set of insights that are summarized in Table 9.1.

The findings from our analysis suggest that, in determining and implementing
a suitable strategy to coordinate individual retailers’ inventory replenishment, the
policy maker needs to be mindful about various business conditions. For example,
is the market entry strictly controlled by government (such as in the case of drugs
or medical items) or is free market entry feasible where retailers can enter the
market willingly as long as their profit is no less than a pre-specified reservation
value? It is also important for the policy maker to keep in mind the priorities in
adopting a coordinating strategy. For instance, in the regulated market setting, is it
more important to consider the retailers’ benefits and survival conditions, or is the
consumer welfare a more serious issue to be taken care of? In the unregulated case,
is the size of the retailer network (defined by the number of participating retailers)
a critical consideration to maintain the sustainability of the market? In addition,
other factors such as the nature of competition (i.e., whether retailers engage in
price or quantity competition) and the demand characteristics (i.e., whether it
is deterministic for, e.g., commodity products, or uncertain for, e.g., medical or
fashion products) may also influence the effectiveness of the collaborative strategies.
Contingent on these factors and the priorities in policy-making, the policy maker
may choose to encourage an open cooperative formed by the participating members
or to introduce an intermediary non-profit wholesaler to the system.

We close this chapter by discussing a few research avenues for collaborative
micro-retailing. First, it is interesting to observe that purchasing cooperatives
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and non-profit wholesaling can be operationalized in different ways in practice.
For example, under the Hapinoy program for local sari-sari stores in the Philip-
pines (Hapinoy 2018), the wholesaling services are undertaken by one of the
micro-retailers which is called the community store. Such dual role of the retailer
creates additional complexity to the competition dynamics in the market and affects
the retailer profit and consumer welfare. Studying the impact of such operational
factors can generate important insights as to effective implementation of these
collaborative strategies (see Zhang et al. 2017, for a relevant study). Second, as
financial and technology support to micro-retailers increases and the operational
constraints of these retailers loosen up (as it is indeed the case in many rural areas),
more strategic decision-making tools are required. Examples include collaborative
information and demand forecast sharing mechanisms (e.g., Chen and Tang 2015)
and complex inventory planning strategies to mitigate frequent stockouts.
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Chapter 10
The History and Progression of
Sustainability Programs in the Retail
Industry

Tiffin Shewmake, Adam Siegel, and Erin Hiatt

Abstract The retail industry’s economic and environmental impact encompasses
global supply chains and many thousands of facilities; it therefore has a significant
impact on human health and the environment, and a responsibility for reducing
this impact. This chapter begins with an overview of retail’s most common and
significant environmental impacts and examines the origin of sustainable planning
and operations, the business case for sustainability programs, and the maturation of
retail sustainability programs.

Companies start sustainability programs for different reasons—some internal to
the company and some as a result of external pressures. These pressures continue
to drive further action, advancing and maturing sustainability programs across the
industry. Those programs tend to grow and mature around common dimensions,
beginning with a focus on the basics, primarily complying with regulatory require-
ments, then growing to cover operational efficiencies that save costs, reducing
reputational risks, and eventually innovating on the very core of their businesses.
The chapter includes business-actionable steps for retail sustainability practitioners
and ends by describing the critical programmatic components for a strong retail
sustainability program.

10.1 Introduction

The retail industry’s economic and environmental impact encompasses global
supply chains and many thousands of facilities—material extraction to manufacture
to consumer disposal of products after their purchase. As a result, retailing has a
significant impact on human health and the environment. Retail is not unique in
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this aspect; all organizations, in all economic sectors, contribute to environmental
degradation. While some industries, such as mining and manufacturing, are more
directly associated with environmental issues, all sectors including real estate,
banking, telecommunications, medicine, entertainment, and more, use energy for
their operations, require material inputs, produce waste, develop land, and generate
greenhouse gases (GHG). The environmental consequences of these activities span
geographies from local, such as the pollution of a pond or stream, to global, as in
the case of climate change.

Just as every organization in this chain causes environmental damage, each is also
responsible for reducing this damage. This is true not just for primary sectors such as
manufacturing, but also governments who are responsible for setting and enforcing
protective regulations, and consumers, whose purchase, use and disposal habits, all
affect the potential environmental harm from a product. The retail industry is in
a unique position to reduce impacts because of its influence on its supply chains,
including product design, manufacturing, and logistics, as well as control of its
more direct operations. However, retail’s greatest influence potential comes from
the unique relationship between retailers and their shoppers. Retail has the ability
to educate consumers about the impact of their buying decisions and, in turn, can
translate consumer’s desire for “greener” products back through the supply chain.

10.1.1 What We Will Cover

This chapter covers the pursuit of sustainability by retail companies, with a
focus on environmental sustainability. It begins with an overview of retail’s most
common and significant types of environmental impact, and examines the origin of
sustainable planning and operations, the business case for sustainability programs,
and the maturation of retail sustainability programs. Each section includes business-
actionable insights and steps that retail sustainability practitioners can use to guide
their strategic planning and operational activities.

The chapter also provides an overview of responsible sourcing, which is a
primary element of a retailer’s holistic corporate social responsibility program
(CSR). Responsible sourcing has environmental elements such as pollution and
deforestation as well as social areas such as forced labor. Some of the environmental
aspects of responsible sourcing are covered here, as well as a history of related social
aspects that are integral in the development of modern CSR programs.

10.1.2 History

There is a long history of concern over the environment, particularly following the
industrial revolution of the late eighteenth and early nineteenth centuries. During
this time, industrial advancements were essentially inseparable from environmental
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degradation, as the full consequences of environmentally intensive materials extrac-
tion techniques and carbon-based fuel sources were not yet known. In 1798, Thomas
Malthus wrote his famous essay predicting dire consequences from a growing
population and the stresses this would place on the earth’s resources. In the USA, it
would take nearly 200 years before concern over growing and visible pollution lead
to major federal environmental legislation in the seventies such as the Clean Air
Act and the Clean Water Act. At that time, companies focused their environmental
efforts primarily on complying with the new laws and later with managing direct
environmental damage such as pollution prevention initiatives.

There was no widespread societal expectation that businesses were responsible
for anything more than complying with the law when operating in a capitalistic
economy. In the late eighties, the concept of sustainability, that is to balance
development and environmental degradation so that the latter does not inevitably
lead to the prevention of the former, was brought to international recognition
and articulated by the 1987 Brundtland Report (United Nations 1987). Although
companies were still focused mostly on direct environmental issues, there was a
shift to a new and broader concept, that of CSR.

CSR encompasses a range of areas in addition to the environment and is perhaps
best characterized by the term “Triple Bottom Line,” first coined by John Elkington
in 1994, which refers to social, environmental, and financial aspects, or in short:
people, planet, and profits (Elkington 1994). Today, corporate CSR programs cover
issues ranging from sustainable operations to philanthropy, labor practices, supply
chain, and volunteering. Because CSR is so broad-reaching, implementation of
different aspects of a CSR program may be divided up among different parts of
a company. For example, a CSR goal may be to reduce greenhouse gas emissions
but it is the facility operations staff who implement the practices needed to reach
the goal. CSR programs frequently have a focus on transparency, with companies
committing to annual reporting of their efforts. In response, several organizations
have developed sustainability and CSR reporting frameworks such as the Global
Reporting Initiative’s (GRI) Sustainability Reporting Standards.

Although a few retailers were early adopters of these new values, such as the
1987 launch of the Body Shop, CSR as business discipline is relatively new. The
earliest programs in retail companies began in the mid-1990s, primarily as a result of
media and activist attention on consumer products, focusing on human rights abuses
in textile and footwear factories. The drive for low-cost manufacturing had created a
global production economy with few regulations or oversight, and little transparency
for consumers. Child labor and sweatshop-like conditions in factories like the ones
producing the celebrity Kathie Lee Gifford’s clothing line made the front-page news
in major publications, catching the attention of consumers worldwide.

Initially, the pressure to change focused on consumer brands, the producers of
retail products, rather than on the retailers themselves. Brands tended to take one of
two divergent paths in response to the pressure. Some brands pushed back, claiming
that the factories were not under their control, and that they had little influence
in correcting these human rights challenges. These brands also characterized the
problems as a natural consequence of globalized economic markets that push for the
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lowest possible manufacturing costs. On the other hand, some brands accepted the
challenge, recognizing that their reputation was at stake. These companies stepped
up by partnering with local experts, non-governmental organizations (NGO), and
government agencies to test and scale solutions.

Nike is perhaps the most famous example, having been the target of numerous
protests after Harpers published a 1992 exposé on working conditions in Indonesian
factories (Ballinger 1992). While Nike initially attempted to dampen criticism,
public outcry stretched from protests at the 1992 Barcelona Olympics to backlash
following an insufficiently critical report from the diplomat and activist Andrew
Young, peaking in 1997 when college students nationwide protested university
contracts with the company. In 1998, Nike made a hard pivot, beginning with a
speech by then-CEO Phil Knight, acknowledging and taking responsibility for the
exposed practices. This was quickly followed by the creation of the Fair Labor
Association, a rapid escalation of factory audits, factory contract transparency,
and the start of regular, detailed reports on commitments, progress, and ongoing
challenges. This was the strongest indicator the industry had seen to this point
of the inevitable rapid push for transparency and accountability, with consumers
demanding that companies face issues head on rather than shield the public from
global capitalism’s darker potential.

Over two decades later, the stigma from the initial headlines continues to have
staying power, with many consumers still associating accused brands with child
labor and sweatshop-like conditions. As a result, consumer brands, whose reputation
accounts for a large portion of their market value, now see the need to address this
threat and recognize the importance of a “social license to operate,” whether or
not they directly control their manufacturing. For example, after the 2013 Rana
Plaza factory collapse in Bangladesh, where over 1000 garment factory workers
died, many retailers became involved in initiatives designed to prevent similar
tragedies. Some companies, including Gap Inc., J. C. Penney, Kohl’s, Target,
VF Corporation, and Walmart developed a new organization, the Alliance for
Bangladesh Worker Safety, which is a “legally binding, 5-year commitment to
improve safety in Bangladeshi ready-made garment (RMG) factories” (Alliance for
Bangladesh Worker Safety 2018). The organization was unprecedented for its level
of collaboration and accountability, bringing the US and Bangladeshi governments
together with consumer brands and retailers, NGOs and labor groups. This modern
example illustrates how major retailers moved from a head in the sand position
relative to their supply chain to one of positive public engagement (Fig. 10.1).

In the early and mid-2000s, off the heels of fresh wins and a growing consumer
consciousness of factory-related issues, activists, socially responsible investors,
and the media expanded their coverage into other industries and beyond human
rights issues. It was perhaps the exposure to shocking human rights issues that
led consumers and investors to demand greater transparency in retail supply
chains, expanding the scope of issues covered to include environmental problems.
Retailers, whose product supply chains now stretched deep into the developing
world and had influence—whether strong or not—on production facilities, had
many layers of social and environmental impacts for which they could now be held
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Fig. 10.1 Outline of a circular economy (graphic from The Ellen MacArthur Foundation https://
www.ellenmacarthurfoundation.org/circular-economy/infographic)

accountable. The public and NGOs brought new focus to environmental issues such
as deforestation from palm oil plantations, water pollution from textile manufac-
turing, and GHG emissions. As more consumer brands developed sustainability
programs, often taking a proactive approach in improving their brands, retailers
followed suit, building on their lessons learned. The main areas of focus for retail
environmental sustainability programs align directly with their areas of influence,
including facility operations, product lifecycles, and marketing to consumers—all
subsequently detailed in this chapter.

Retail sustainability programs have matured since the earliest programs. The
leading programs, like those of Apple, IKEA, Nike, and VF Corporation, take a
holistic and systemic approach to addressing the environmental impacts of their
businesses. The term “circular economy” has recently emerged as a vision for an
alternative consumption model with significant implications for the role of retailers.
The Ellen McArthur Foundation, a leading organization in the field, describes the
circular economy as:

Looking beyond the current “take, make, and dispose” extractive industrial model, the
circular economy is restorative and regenerative by design. Relying on system-wide
innovation, it aims to redefine products and services to design waste out, while minimizing
negative impacts. Underpinned by a transition to renewable energy sources, the circular
model builds economic, natural, and social capital (Ellen MacArthur Foundation 2017).

https://www.ellenmacarthurfoundation.org/circular-economy/infographic
https://www.ellenmacarthurfoundation.org/circular-economy/infographic
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To conform to a circular economy, brands and retailers need to design and source
products with recycled and recyclable materials, produce and distribute products
with renewable energy, and provide opportunities for consumers to share, rent, take-
back, reduce, reuse, or recycle products when they are finished using them.

The pursuit of a circular economy is aligned with the UN Sustainable Devel-
opment Goal (SDG) 12, Responsible Consumption and Production. This goal,
summarized most simply as “doing more and better with less,” requires a systems-
thinking approach with implications stretching from producer to consumer (United
Nations 2015). It is becoming more common for companies, including retailers, to
align their sustainability activities and the UN goals when setting their corporate
objectives and in public reporting. Dave Lewis, CEO of United Kingdom grocer
and merchandise behemoth, Tesco, is the Chairman of Champions 12.3, a group of
executives from business, government, and NGOs dedicated to achieving SDG goal
12.3 to reduce food waste. According to Lewis, measuring waste is a first step: “We
believe that what gets measured gets managed. Ultimately, the only way to tackle
food waste is to understand the challenge—to know where in the supply chain food
is wasted.” In 2013, Tesco became the first UK retailer to report on its food waste and
is over 70% of the way towards its goal that no food, safe for human consumption,
goes to waste. Other retailers have also set goals aligned with SDG 12, such as
Starbucks’s vision for more sustainable coffee farms, which includes programs such
as Coffee and Farmer Equity (CAFE) and the Sustainable Coffee Challenge.

Currently, retail operations, product lifecycles, and marketing are generally not
aligned with the principles of a circular economy. Innovations in business models,
improved product and process design, and reduced compliance obligations can
all result from a circular approach to sustainability management. Coca-Cola, for
example, set an ambitious goal in early 2018 to recycle the equivalent of 100% of
the packaging they sell by 2030, ultimately aiming for a complete circular economy
for their packaging. To achieve this, they will need to design products made from
recyclable and recycled materials, and with materials that can be recycled in most
locales, as well as invest in recycling infrastructure to improve recycling rates (Karas
2018). Other innovative companies are developing systems to take-back and reuse
the components in products they sell. Apple is one example, creating a robot called
Liam to disassemble 1.2 million iPhone 6 units per year. Liam will be able to
retain a greater quality and value of the components relative to the current e-waste
management process of shredding old electronics (Rujanavech et al. 2016).

10.2 Impact Areas: Facility Operations, Product Lifecycles,
and Marketing

Retail operations impact the environment through three main mechanisms: facility
operations, product lifecycles, and marketing. These operations and the most
significant effects on the environment are detailed below.
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10.2.1 Facility Operations

This section covers facility operations in the most common types of retail facilities,
which are stores and distribution centers (DC). A minority of retailers also own
and operate manufacturing facilities for their private-brand products, which are not
covered here. The environmental areas associated with facility operations include
air emissions, water and wastewater, and waste generation and recycling. The retail
sector has several additional challenges in facility operations. One issue is the
sheer number of facilities; a large retailer can have hundreds to even thousands of
stores. While the number alone makes operations more difficult, this is compounded
by the variations in different regions. For example, a retailer operating in the
Edwards Aquifer area in Texas has to comply with significantly greater stormwater
requirements to protect the groundwater than in other areas of the country, and
retailers in flood prone areas must be prepared to protect their facilities and look for
ways to reduce the cost, waste, and damage from flooding. In addition, store types
vary widely from the large footprint of a standalone home improvement retailer
with outside storage to a small store operating in a mall. The differences mean that
the stores will have very different impact on the environment as well as different
responsibilities and opportunities.

Retailers have the most direct influence for reducing environmental impact
with their facility operations. Managing, for example, energy efficiency projects
in stores is more direct, than managing the supply chain for a product that
contains components from multiple companies in multiple countries across a wide
geographic distance. Facility operations are typically carried out or managed by
employees of the retail company and often involve facilities owned or managed
directly by the company, giving the retailer a high degree of control. In facility
operations that retail employees do not directly manage, for example, waste hauling,
but where the retailer is the primary client, they can include contract language and
provide oversight to help achieve their sustainability goals.

While retailers may build and own their facilities, typically using a contractor to
construct the site to their specifications, most lease facilities from shopping center
developers. For leased properties, retailers typically have control over the interior
build-out, but depending on the size of the space and length of the lease, their
influence on building operations may be limited. The interior build-out of leased
space typically refers to the entire design and layout, including procurement for
walls, floors, ceilings, lighting fixtures, signage, and technology systems.

Decisions about site development and store build-outs have significant impli-
cations on the immediate and long-term environmental footprint of the facility.
For example, a store developed on a wetland site can have a significant long-term
negative impact, while a store placed near a city center can have reduced footprint
both in terms of the structure and how consumers travel to the store. A build-out
using more energy efficient technology can reduce energy use and save money over
the store’s life. Some retailers have policies to implement green building standards
for buildings and interiors. The best-known standard in the USA is the Leadership
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in Energy and Environment (LEED), which has two rating systems specifically for
retail, one for new construction and one for interiors. In 2008, Kohl’s committed to
achieving LEED certification for all new stores and corporate facilities. Kohl’s also
operates stores using the LEED for Existing Buildings: Operations & Maintenance
guidelines (USGBC 2017). According to Starbucks in 2014, “Each day in 18
countries around the world, an estimated 229,000 people visit a LEED-certified
Starbucks location. . . . In fact, Starbucks LEED-certified stores actually use 30%
less energy and 60% less water than non-certified locations” (USGBC 2014).

The rise in green building design and construction in retail is illustrated by the
growth in retailers’ LEED certifications and commitments. In 2001 there was only
one LEED-certified retail project; by 2013 there were 905. Companies like Target,
Starbucks, Kohl’s, Yum! Brands, and others led the way with their commitments to
green building design and the LEED program. Many retail companies are benefiting
from the energy- and cost-savings potential of greener buildings by updating
their standard store designs to LEED standards but without a formal certification
(USGBC 2014).

The demand for DCs is growing to support e-commerce and customer expec-
tations for fast shipping. DCs, which can be up to one million square feet, are
not passive storage warehouses, but rather high-tech spaces that use automation,
computers, and technology to optimize cost and speed. DCs have a significant
impact on the environment, including impaired water quality from stormwater
runoff, air pollution from trucks, GHG emissions from energy use, and waste. Many
retailers are working to make DCs more sustainable by focusing on areas such as
energy efficiency, renewable energy, and waste reduction and recycling. Leaders go
further, for example, REI’s Arizona DC is LEED platinum certified with net zero
energy and zero waste. However, the reality is that the majority of DCs have a long
way to go to match this performance.

Air emissions from store operations can be from direct sources such as vehi-
cles, boilers (for heating larger stores and distribution centers), and emergency
generators, or indirect from the use of electricity. Air pollution has significant
environmental and health impacts including contributing to major health effects
such as strokes, heart disease, and asthma, as well as to climate change. While direct
sources may seem small individually, in urban areas the combined emissions can be
significant. The extent of air pollution from electricity depends on the fuel source.
Coal-fired power plants have the most health and environmental negatives from the
coal mining to air pollution to coal ash waste. Air emissions from coal-fired power
plants also contribute to water pollution and are a leading cause of mercury in water.
Although considered cleaner, unburned natural gas is a potent GHG and fracking
can cause there are significant environmental damage.

Energy efficiency is a cost-effective way to reduce the negative impact of energy
use and GHG emissions. In retail, one of the challenges to implementing energy
efficiency is that many of the changes, for example, lighting or refrigerated case
design, affect customers. Retailers are naturally hesitant to introduce any change that
may be perceived negatively by customers and therefore prefer to leave conditions
as-is, rather than change existing systems. However, changes can also yield positive
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benefits. One study found that the use of LED lights in displays could reduce energy
use by 50%, without sacrificing visual appeal or the ability to attract the attention of
shoppers (Freyssinier 2006).

Another challenge is rolling out new technologies over hundreds or even thou-
sands of facilities. The logistical and operational considerations in such large-scale
implementations make even seemingly minor changes cost-prohibitive. Therefore,
it is customary to introduce new, energy efficient technologies during routine
maintenance and store systems upgrades. Performing rollouts in this way allows
retailers to save on the cost of “truck rolls”—sending maintenance vehicles and
building engineers to stores.

Leading retailers have set public targets for greenhouse gas reduction. Retailers
with public science-based targets, i.e., targets based on reductions, need to keep
warming below 2◦C, include Best Buy, Gap, Target, CVS, and Walmart. As an
example, CVS’s goal is “to reduce absolute scope 1 and 2 GHG emissions 36%
by 2030 from a 2010 base-year. CVS Health also commits that 70% of its suppliers
by emissions will set science-based emissions reduction targets on their scope 1 and
2 emissions by 2023” (Science Based Targets 2018).

Many retailers are also turning to renewable energy to reduce pollution and meet
GHG emissions reduction goals. A number of major retailers participate in EPA’s
Green Power Partnership, making commitments to use green power (solar, wind, or
biogas) for some or all their electricity. Some retailers including IKEA, Estee Lauder
Companies, H&M, Starbucks, Tesco, T-Mobile US, VF Corporation, and Walmart
have made a commitment to 100% renewable energy through the RE100 global
initiative. In 2016, Target, with 147.5 megawatts of solar capacity, passed Walmart
as the US company with the greatest solar power capacity. Other retailers with large
solar arrays are Costco, Kohl’s, and IKEA (Solar Energy Industries Association
2017).

Another air pollution source in retail are the common refrigerants such as chlo-
rofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs). These chemicals,
used in freezers, air conditioning units, coolers, and vending machines, contribute to
the destruction of atmospheric ozone and the resulting ozone hole, and can be very
potent greenhouse gases. As a result, some types of refrigerants are banned and
there are regulations to encourage the use of less harmful refrigerants and reduce
leaks from equipment. Most of the regulations are at the federal level with the
exception of California, which has state regulations designed to control refrigerant
emissions and reduce the use of HFCs (California Air Resources Board 2018).
Grocery retailers such as Albertsons, Aldi, BJs Wholesale Club, Food Lion, Giant
Eagle, Meijer, Publix, and more participate in EPA’s GreenChill program. These
companies make a “commitment to reduce their corporate refrigerant emissions by
annually setting reduction goals, measuring corporate stocks and emissions, and
reporting their data to EPA” (EPA 2018). However, ultimately to protect the ozone
layer and meet climate change targets, companies will need to switch to “natural”
refrigerants including hydrocarbons such as propane and iso-butane, carbon dioxide,
ammonia, water, or air.
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Another area, not usually associated with air pollution, are emissions from
products that contain volatile organic compounds (VOC) such as adhesives, air
fresheners, and solvents. VOCs can be unhealthy to breath and contribute to the
formation of smog. As a result, there are federal and state regulations that limit
the amount of VOCs allowed in products. Some retailers go beyond the regulatory
requirements and implement internal policies to carry products with low or no
VOC emissions. For example, in 2012 Home Depot transitioned to low-VOC paint
tinting colorants, and currently all of their latex wall paints are zero or low VOC
formulations. In addition, they offer other products such as flooring and carpet
pads that are certified for very low chemical and VOC emissions (The Home Depot
2017).

Water pollution is another environmental concern with retail operations. Storm-
water in developed areas flows faster and with greater force over impervious
surfaces such as roofs, parking lots, and roads, than in natural areas. The force of
the flow causes increased erosion and sediment, and the stormwater also picks up
contaminants such as oil from parking lots, and fertilizers and pesticides. Brick and
mortar stores have a lot of impervious surfaces from the roofs and pavement. While
some retailers are implementing greener designs in new construction to reduce
or even eliminate runoff, this is not an area where the retail industry is a leader,
especially in regards to reducing impacts from existing structures.

Another environmental impact is the waste that retail operations generate from
packaging and shipping material, food preparation, services such automotive care
or photo printing, as well as unsalable or unusable products. The decomposition
of waste in landfills releases methane, a potent GHG, and air emissions result
from waste incineration. The transportation of waste and the lifecycle of disposed
material is also a significant impact. Many retailers have extensive recycling
programs and some have made commitments for zero waste facilities. Major
retailers Kroger and Walmart both have zero waste aspirations, with Walmart’s
extending to their entire supply chain. There are challenges, however, as recycling
infrastructure is limited in many communities and for some materials. Store design
can also be a factor since recycling programs require space to store material prior to
shipment, which is limited in many stores.

10.2.2 Product Lifecycle

While the facility operations described in the previous section have a significant
environmental impact, in retail, it is really the products that have the largest
and most far-reaching environmental impact. This includes the entire product
lifecycle: design, natural resource extraction including agriculture, manufacture,
transportation, use, and ultimately disposal. The role of retail is to sell goods,
which encompasses a huge array of items including food, clothing, furniture,
home improvement tools, school and office supplies, health and beauty products,
pharmaceuticals, pet products, electronics, vehicles, and many, many more types
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of products. A vast global manufacturing and shipping infrastructure, which fuels
the global economy and employs millions, is required to make and distribute
these goods. According to a November 2016 McKinsey article, over 90% of the
consumer sector’s natural capital impact (e.g., impacting air, soil, land) and over
80% of consumer-goods’ GHG emissions lie in the supply chain (Bove and Swartz
2016). The global production of paper and cardboard alone, for example, was
approximately 407 million metric tons in 2014.

Products begin with design. Product designers determine the products’ form and
function, shapes, colors, materials and ingredients, packaging, and more based on
market needs; i.e., what consumers want, creative elements, manufacturing and
transportation considerations, cost, and other criteria. The decisions made at this
stage influence all other stages of product development, including the product’s
environmental footprint. For example, the materials selected for a product’s design
will define the raw materials used as input into the product’s manufacture. The
size of a product and packaging determines the amount of natural resources used,
the energy used in transportation, and the amount of waste generated. The design
also determines the energy or water efficiency of a product, how long it will last,
if it contains toxic or hazardous constituents, and if it can be reused or easily
recycled. Therefore, it is critical to embed sustainability principles at the very
beginning in the design of new products and reformulation of existing products.
Gap Inc., parent to brands Banana Republic, Old Navy, Gap, Athleta, Intermix,
and Hill City, describes their sustainable design process: “We educate our brand
teams about how to design using more sustainable fibers, fabrics and manufacturing
techniques that save water—and how to procure more responsible materials.” In
addition to training product design teams on making more informed design choices,
the company addresses factors like the type and amount of raw materials used to
reduce water consumption in all aspects of their product lifecycle (Gap Inc 2018a).

Retailers are increasingly using sustainability product guidelines and
certifications for the products they sell to reduce the impact and to help customers
select greener products. Staples offers a range of products with environmental
certifications, including Forest Stewardship Council (FSC) paper products, EPA
Safer Choice and Green Seal

TM
cleaners, Fair Trade and USDA Organic coffees,

Level R© furniture, and ENERGY STAR and EPEAT electronics. Even more,
since 2012, Staples has partnered with the Rochester Institute of Technology
on the Staples Sustainable Innovation Laboratory to find greener alternatives
(Staples, Inc 2018).

Transportation is a significant component of a product’s impact. Retailers can
use a variety of strategies to reduce that impact. For example, companies can
deploy the strategies promoted by the US EPA’s voluntary SmartWay program
to improve freight transportation efficiency, which promotes technologies like
aerodynamic devices for trailers, low rolling resistance tire technologies, and idle
reduction technologies. In 2018, SmartWay Excellence Awardees included Lowe’s
Companies, Inc., Meijer Inc., and Nordstrom, Inc. while previous retail awardees
also have included Gap, Inc., Kohl’s Department Stores, and The Home Depot
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EPA 2018. This award “honors top shipping (retailers and manufacturers) and
logistics company partners for superior environmental performance and additional
actions to reduce freight emissions through effective collaboration, operational
practices, a robust system for validating and reporting their SmartWay data, and
communications and public outreach.”

Eventually, products become waste. While some consumer products are recycled,
the recycling infrastructure and culture in the USA are weak and most used products
are sent to the landfill or incinerated. For example, less than 10% of plastic
waste is recycled and it takes hundreds to thousands of years to decompose in
a landfill, if it ever actually decomposes. Recycling products not only takes it
out of the waste stream, but also reduces the need for virgin natural resources to
make new products. Also, the manufacturing of recycled content products generally
has a smaller environmental footprint. Some retailers have take-back programs for
specific types of waste, such as Best Buy’s e-waste program and the used plastic
bags collected by grocery stores. However, the real, long-term solution to waste is a
shift in consumer preferences so that consumers seek products made with recycled
content, products that can be recycled, and view single-use or disposable products
less positively. IKEA educates consumers to live healthier and more sustainably,
including the energy and cost-savings benefits of using LED light bulbs, high
efficiency refrigerators, induction cooktops, and insulating rugs; reducing tap water
consumption and food waste; creating simple in-home recycling solutions; and
more. The company also encourages consumers to use bicycles instead of cars for
some trips, eat vegetarian, and grow produce locally (IKEA 2018).

Lifecycle Assessment (LCA) is used to measure all of a product’s environmental
impacts. LCAs look at the full lifecycle of a product, from production through use,
and finally to disposal. The International Organization for Standardization (ISO)
14040:2006 lays out a framework for conducting LCAs (International Organization
for Standardization 2006). LCAs are also used to compare the performance between
different products. For example, one company compared wine packaging LCAs
that included data from raw material extraction through to disposal, and found
that cardboard packages have a significantly better environmental profile than other
types of wine containers (Tetrapak 2018). Similar techniques are also used for the
“social” lifecycle impact of products. The value of these tools is only as good as
the underlying data and, while there is a growing body of research, more work is
needed to assess product lifecycle impacts at scale.

10.2.3 Marketing

Surprisingly marketing has a significant influence on sustainability. Marketing can
create demand for more sustainable products and awareness of important issues.
For example, in 2014, Target launched a collection called “Made to Matter—
Handpicked by Target” that featured more sustainable products across several
categories including baby, beauty, and grocery. These products were marketed to
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consumers through a variety of channels and even given premium store real estate
on aisle endcaps. Other retailers, such as The Body Shop, Patagonia, and Whole
Foods, market sustainability to differentiate themselves and to educate customers. In
some cases, customer concerns, often amplified by activist groups, convince brands
and retailers to offer and then promote more sustainable products. For example, at
the urging of animal welfare groups, most major grocery stores in the USA have
made commitments to sell only cage-free eggs and sustainably sourced seafood, a
commitment that they can then promote to their customers.

While companies with a core sustainability mission have been successful in
translating their sustainability message to growth, like the sales bump from Patag-
onia’s 2011 “don’t buy this jacket” campaign, other retailers find it harder to use
sustainability to drive sales (MacKinnon 2015). For example, one research article
found that consumers’ existing perceptions of retailers influenced their perception
of the authenticity of sustainability efforts such that “More tangible aspects such
as perceived customer service performance, create a halo effect that influences the
authenticity of a sustainability program. If the goal of a sustainability effort is to
salvage an ailing public image that is suffering from perception of bad service
quality, then a sustainability program is not likely to provide a positive return on
that goal” (Brockhaus et al. 2017). The message here may be that consumers trust
brands that they believe in, and that companies without this sustainability core
must work harder to develop trust and be more careful about the appearance of
greenwashing.

Some retailers build sustainability into their brand and communicate this to
their customers, who increasingly prefer to shop with more sustainable companies.
Outdoor retailer REI and grocer Whole Foods Market provide product labels that
give consumers information about the environmental impact of their products.
For example, Whole Foods uses an Eco-Scale for cleaning products with orange,
yellow, or green ratings based on criteria such as transparency, chemicals, and
animal testing. For these retailers, their sustainability mission is aligned with their
consumers.

In other cases, retailers not typically associated with sustainability are taking
significant steps towards sustainability but the focus of their communications are
different. In 2005, Walmart’s then CEO H. Lee Scott, announced a far-reaching
sustainability strategy for Walmart including the goal to sell more sustainable
products. Unlike high end retailers REI and Whole Foods, Walmart, as a retailer
dedicated to low prices, cannot pass additional costs along to consumers. As a result,
Walmart’s approach focused on moving all suppliers towards better environmental
and social performance rather than depending on consumers to choose more
sustainable products (Spicer and Hyatt 2017). Other companies direct some of
their sustainability communications towards the environmental community. In 2017,
Target set public goals around chemicals in products and committed to reporting
results. Their reporting is not intended primarily for customers, but instead is for the
environmental community through their CSR Report (Target Corporation 2017).
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10.3 The Initiation of Retail Sustainability Program

Companies start sustainability programs for different reasons—some internal to
the company and some as a result of external pressures. These pressures continue
to drive further action, advancing and maturing sustainability programs across
the industry. This section describes the most common pressures that result in the
initiation of sustainability programs in retail companies.

10.3.1 Born with It: It is Who We Are

Some companies, albeit a relatively small segment of the retail industry, were
founded on sustainable principles. This is often the result of an eccentric or dynamic
founder, who has strong social values and an intrinsic interest in creating change in
the consumption industry. Companies like Patagonia, Whole Foods, and Seventh
Generation grew from their very start based on the sustainability motivations of
their founders. More recently, retailers like TreeHouse, Warby Parker, and LUSH
have been founded on sustainability principles to meet the growing demand for
companies with positive social values.

10.3.2 Senior Management

Senior executives initiate sustainability programs for several reasons. Some because
of corporate motivations like enhancing their company’s reputation, reducing costs,
or building their own legacy. Others are pressured by external motivations like
the opinions of customers or the media, or a competition drive. However, some
corporate leaders build a broader understanding of their company’s environmental
impact and respond by launching sustainability programs.

Executives Paul Polman of Unilever, Ray Anderson of Interface, and Mike Duke
of Walmart all saw the importance of more sustainable operations. These corporate
leaders became aware of, and concerned with, the consequences of their corporate
operations on the global environment, or on their employees and consumers. They
often talk about epiphanies from reading a book devoted to sustainability, touring an
ecological disaster, or even from dealing with family health issues. These devotees
become personally passionate about sustainability, often leading their company’s
sustainability programs themselves, or becoming public figureheads and influencing
other corporate executives to follow in their footsteps.

Other corporate executives land on the value of sustainability based on cost-
savings or the potential of new sales. Enterprising leaders recognize that sustainable
operations can reduce the need for utility and material inputs like electricity, fuel,
water, chemicals, or materials, can reduce wastes, and may reduce regulatory and
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other risks. These executives see sustainable thinking as a means for increasing
efficiency and saving money. Entrepreneurial leaders also see the opportunity to
go beyond sustainable operations to create new services or products to address
sustainability challenges. For example, many retailers have created new product
lines that are eco-friendly or health-conscious in response to growing demand from
LOHAS (Lifestyles of Health and Sustainability) consumers.

Finally, a third segment of retail executives launch programs in response to
competitive pressures; i.e., “everyone else is doing it.” As with all corporate
activities, certain industry practices grow in prevalence until they become the
norm. Peer benchmarking, investor inquiries, and consumer insights all drive the
dynamic of companies following their peers. According to a 2017 survey of 151
large companies by the nonprofit BSR, the CEO/C-suite leadership has the greatest
influence on the corporate sustainability agenda, over that of stakeholders such as
customers, investors and government. That sustainability is increasingly the norm is
illustrated in the same survey by the response of companies to the USA pulling out
of the Paris Agreement on climate change—75% of respondents indicated that this
would either have no impact or strengthen their commitments to addressing climate
change (BSR 2017).

10.3.3 Grass Roots: Employees

Interestingly, the human resources (HR) department may be one of the more
valuable allies for promoting sustainability. Employees, especially younger people,
want to work for companies with sustainable values. According to a 2016 survey,
76% of millennials consider social and environmental commitments when job
hunting and 64% will not work for a company with poor CSR practices (Cone
Communications 2016). As a result, HR must respond to new questions in areas
such as CSR, diversity and inclusion programs, and philanthropic interests, and
design recruiting programs that appeal to applicants who care about sustainability.

10.3.4 Investors and Customers

There are two major outside stakeholders that drive industry change: investors and
customers. Customers exert direct influence on retail companies, as the driving
factor in retail is acquiring and retaining customers. Retail companies are acutely
aware of consumer trends, spending millions on consumer insights research each
year. When consumers prefer eco-friendly, natural, organic, local, non-toxic, or
other products with sustainable attributes, retailers are quick to respond by adding
new product lines or improving the eco-friendliness of existing products.

Investors are increasingly factoring sustainability considerations into their invest-
ment criteria and rating companies on sustainability-related Key Performance
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Indicators (KPI). Ranking and rating systems like the Dow Jones Sustainability
Index (DJSI), which features a few major retailers (Best Buy, Canadian Tire,
CVS Health, and Gap Inc.) further promote this trend. Investors have back-room
conversations with executives in their portfolios, and when action is not taken, they
may submit investor resolutions. Ceres, a sustainability nonprofit that works with
many investors and corporations, maintains a database of shareholder resolutions
since 2011. Over 150 were filed in 2017 alone (Ceres 2017). Highlighting this trend
of investor engagement, Blackrock, the world’s largest asset management company,
recently communicated the importance of sustainability to companies, saying “To
prosper over time, every company must not only deliver financial performance, but
also show how it makes a positive contribution to society.”

10.3.5 Activists and Media

Activists target retail companies because of their influence in the global economy
and the consumption system. Activists may use exposés, documentaries, and hidden
camera footage to highlight negative practices in consumer goods supply chains.
Those efforts are intended to gain media attention and to spread via social media
channels. Recent reports have focused on issues such as truckers in the USA,
seafood produced in Thailand, and conflict minerals from the Democratic Republic
of the Congo. Activists seek to raise awareness of these issues among the general
population, hoping to change consumers’ purchasing habits, company operations, or
trigger new regulations. This indirect pressure influences investors and consumers,
which further create a market environment that promotes the development of retail
sustainability programs.

Because of these forces, more retailers are adopting sustainable practices and
building sustainability programs and governance structures. The following section
describes the typical maturity stages for a retail sustainability program, highlighting
the progress companies make as their programs mature.

10.4 Stages in Retail Sustainability Program Maturity:
(1) Compliance, (2) Efficiency, (3) Reputational Risks,
and (4) Innovation and Circularity

No matter the origin, retail sustainability programs tend to grow and mature around
common dimensions. They begin with a focus on the basics, primarily complying
with regulatory requirements, then growing to cover operational efficiencies that
save costs, reducing reputational risks, and eventually to innovating on the very
core of their businesses. The following section outlines each of these four maturity
stages, documenting the operational practices that retailers can undertake to address
each stage.
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10.4.1 Stage 1: Compliance—Beginning with What
is Required

Environmental compliance programs are typically considered separate from sustain-
ability programs. However, they can directly influence the success of a sustainability
program and in turn, sustainability efforts can affect compliance efforts. Environ-
mental compliance programs consist of the processes that a company uses to ensure
compliance with regulatory and other requirements. The most broadly implemented
program framework is the Environmental Management System (EMS), which is
based on a plan-do-check-act approach to continual improvement. The formal
EMS standard (International Institute of Standards (ISO) 14001:2015) also includes
provisions related to sustainability.

Given the level of environmental requirements in retail, as compared to other
sectors such as manufacturing, most retailers choose not to implement a full EMS.
An exception is Best Buy, which has an ISO certified EMS. Interestingly, it was Best
Buy’s commitment to sustainability and subsequent decision to accept e-waste from
consumers that helped drive their EMS implementation. Hazardous components
in electronics trigger significant regulatory requirements for the management of
hazardous waste and the EMS helps Best Buy stay in compliance.

A poor compliance program can damage a company’s sustainability efforts in
several ways. Environmental violations, especially major events, can erode the
reputational benefits gained from a sustainability program and make even a well-
intentioned company appear to be insincere and guilty of greenwashing. This is
especially true for violations that customers perceive as affecting them, which is
more likely in retail than in less consumer-facing industries. In 2013, four retailers
paid fines of $1.26 million for selling fabric labeled as bamboo that was actually
rayon, a violation of the Textile Products Identification Act and misleading to
consumers because, while bamboo is viewed as renewable and environmentally
friendly, rayon has a significant environmental impact.

Violations and environmental damage can also influence investor perceptions
and stock prices. Lumber Liquidators stock collapsed after a 60 min story about
laminate flooring from China containing formaldehyde over acceptable limits and
further eroded when the company was charged with environmental violations related
to importing wood from illegal sources. In addition to the impact on stock prices,
sales were also negatively affected (Conniff 2016). This example illustrates how the
supply chain is an area of significant risk for retailers. In another example, sales at
the British company Tesco suffered from a 2013 scandal when beef products from
several suppliers were found to contain significant amounts of horse and pig meat.

A good compliance program can help a company set and achieve their sustain-
ability goals. Many compliance programs include a process to identify the most
significant regulatory risks and environmental impacts. This process can be used
to set sustainability goals that focus on reducing the organization’s most negative
environmental impacts. A company commitment, such as a public commitment to a
specific GHG reduction goal, becomes a corporate requirement and can be included
in the company’s compliance program. This provides an established process for
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tracking progress, reporting, and achieving sustainability goals. For example, in
addition to compliance with regulations, Best Buy uses their EMS to help track
and achieve sustainability goals in areas such as recycling and GHG reduction.

Environmental regulations increasingly overlap with sustainability objectives.
Several states have enacted legislation that bans or restricts certain chemicals in
consumer products, especially children’s products, or require labeling and reporting
when the chemicals are used. California’s Proposition 65 (1986 Safe Drinking
Water and Toxic Enforcement Act) requires retailers to label products containing
chemicals on the Prop 65 list to give consumers “clear and reasonable warnings”
about possible carcinogens, or birth defects and other reproductive harm. Many
retailers have responded to this type of legislation by reducing or eliminating
chemicals that trigger the requirements from their products, either by reformulating
store brands or asking suppliers to remove chemicals. In 2017, Target announced an
ambitious plan to be more transparent about product ingredients, remove selected
chemicals from products, and to fund efforts to find safer alternatives for potentially
harmful chemicals.

Waste is another area where regulations can drive more sustainable operations.
Many states and local jurisdictions ban certain items from landfills to promote
recycling or reuse. This includes items such as used tires and appliances, as
well as recyclables such as cans or cardboard. In California, Assembly Bill 1826
requires companies to compost organic waste such as food waste. Interestingly,
these requirements are related to California’s GHG emissions reduction efforts, as
decomposing food waste in landfills generates methane. Collecting and composting
food waste can be a challenge for many retailers who lack the space to set up a
separate container and must control the smell of the organic waste and potential for
attracting pests. One solution is to reduce the volume of waste. The EPA developed
the Food Recovery Hierarchy with a focus on source reduction and finding other
uses for food waste with landfilling at the bottom of the hierarchy (EPA 2017).

More sustainable operations have the potential to reduce compliance costs,
regulatory requirements, and risk. Over the past few years, retailers have been fined
millions of dollars for not complying with hazardous waste regulations. Under the
regulations, common consumer products such as cosmetics, medicines, cleaning
products and more may be considered hazardous waste when unsalable. Reducing
the amount of waste by reducing breakage, expired products and unsold products,
saves money as the disposal of hazardous waste is expensive and reduces the risk of
noncompliance. Another example is the potential to reduce stormwater fees based
on the amount of impervious surfaces by using green building approaches.

10.4.2 Stage 2: Efficiency—Reducing Short-Term Costs

Reducing utility bills is the next motivation for retail programs. Because utilities
are already a clearly defined line item in a facility’s operating expenses and affect
a company’s overall profitability, they are often the first sustainability area that
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businesses tackle. These projects are also easier to launch as projects with a
guaranteed reduction in recurring expenses with direct financial returns are easier
to sell internally and to evaluate. These business benefits are catalogued in case
studies like those showcased in the Retail Industry Leaders Association (RILA)
Resource Library (RILA 2017a), the Department of Energy (DOE) Better Buildings
Solutions Database (Better Buildings: U.S. Department of Energy, Solutions 2018),
and the Environmental Defense Fund (EDF) Climate Corps fellowship outcomes
(EDF 2017).

Economic concepts like ecosystem services (i.e., benefits gained from the
natural environment) and policy strategies like environmental excise taxes can
be used to account for negative environmental externalities. The carbon taxes
across Europe and in Canada are examples. As these frameworks improve and
become normalized, they help assign costs to the previously unaccounted financial
implications of environmental degradation. As these concepts become more popular
with governments and corporations, environmental sustainability and profitability
become increasingly intertwined.

Some retail companies already apply corrective pricing schemes to their opera-
tions in recognition of their absence in current markets and in anticipation of future
legislation. Companies like Louis Vuitton, Moet Hennessy (LVMH), Puma, Disney,
and Canadian Tire have all developed real (revenues are invested into carbon-
reducing projects) or shadow (financial impact is included as a symbolic indication
of carbon-intensity) internal prices on carbon. Many more companies plan to
develop their own prices in the next few years (CDP 2016). However, the more
intangible risks and benefits of sustainability will continue to evade monetization
because of the inherent challenges to quantifying their importance and impact.

10.4.3 Stage 3: Managing Reputational Risk

Goodwill, the intangible corporate value that includes brand value, can be significant
for a company, especially for consumer-focused retail. A public reputation for
sustainability can help build goodwill; companies get the business benefit of
their sustainability programs by differentiating them from their competitors and
attracting customers concerned about the environment. However, this also means
that companies open themselves to the risk of overpromising, underperforming,
being perceived as misleading, or worse, dishonest. This can range from charges
of greenwashing and even penalties as described in the previous section about
textile labeling to a more serious loss of trust with the public. Consequences can
also include the loss of sales, drop in share price, and damage to the company’s
reputation and goodwill.

Companies that embark on a sustainability program must be committed to the
program and not simply using marketing to appear green. This is why it is critical
for senior leadership to understand, support, and promote sustainability efforts.
Volkswagen was promoting their cars as a greener alternative while implementing
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emissions override software, which was not just illegal but a breach of trust with
their customers and cost the company billions of dollars. While the cause of the
VW scandal likely has more to do with a breakdown in management, one underlying
reason is that top management did not truly care about air pollution.

Sustainability or CSR reporting has become a standard practice for large and
mid-cap companies. CSR reporting helps protect a company’s reputation as it
highlights their commitments while also showing transparency so that the company
does not appear to be misleading. Public reporting also has internal benefits as it
helps companies set and implement long-term goals and evaluate their performance.
However, this is one area where retail has lagged other industries. According to a
recent report on global CSR reporting, “more than two thirds of companies in all
sectors except retail now report on their CR performance” (KPMG 2017).

Sourcing products that are more sustainable and ensuring the accuracy of
sustainability claims can be a challenge for retailers, who often depend on the
word of suppliers that their products conform with the company’s sustainability
guidelines. Walmart uses a Sustainability Index to evaluate supplier sustainability.
Target launched a Sustainable Product Standard to evaluate products and plan to
use the results in purchasing and placement decisions. In the broader world of CSR,
especially around labor practices, many retailers conduct audits of overseas factories
to ensure compliance with their standards. In this area, retail is one of the few
industries that is expected to enforce compliance with US environmental and other
regulations in their overseas supply chain. Retailers occasionally join collaborative
organizations, typically nonprofits, like The Sustainability Consortium, Sustainable
Apparel Coalition, the Sustainable Packaging Coalition, BSR, and others to jointly
address environmental or human rights considerations. These organizations can
pool resources, tap expertise that otherwise is not available to any one retailer, and
validate the legitimacy of retailers’ activities and claims.

Another approach to ensuring that “green” products are truly green is to sell
products that meet third-party certifications. Most consumers are familiar with the
“organic” label but there are established certifications for a variety of product types
and issues from more environmental friendly practices such the Rainforest Alliance
certification and the FSC, to the evaluation of products for specific attributes such
as the Green Seal certification for products such as cleaners and paints, or US
EPA’s Safer Choice certification for products that are safer for human health and
the environment. An advantage of this approach is that it is the responsibility of the
third-party certifier to set and enforce standards. In addition, consumers can easily
identify environmentally preferable products on the shelf.

Operating more sustainably and with greater transparency not only helps build
goodwill, it can help reduce risk. Retailers that are leaders in this area are betting on
the long-term benefits of more sustainable operations, as well as the business value
that they will gain from consumers’ preferring to shop at sustainable companies.
Lagging companies, on the other hand, are taking on greater risk. They risk not only
being viewed in a less positive light by consumers but have operational risks by not
understanding or responding to environmental threats such as water shortages or
climate change.
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10.4.4 Stage 4: Innovating Through the Circular Economy

Innovation is the final stage of maturity for retail sustainability programs. Because
sustainability requires creative solutions and cross-departmental collaboration, it is
a natural source of innovation and can drive new value to the business.

Improved Packaging and Product Design They are core components of sus-
tainable innovation. With the concepts of a circular economy in mind, retailers
can uncover opportunities like using recycled materials, replacing non-recyclable
materials with recyclable and natural alternatives, developing new product lines that
promote health and nature, and transitioning to lighter, easier to open packages.
Product design, sourcing, merchandising, and marketing teams often need to work
together to initiate and implement these changes. One of the leaders in sustainable
packaging is Lush with their “naked” line of products, which use minimal or
recycled content packaging and encourage customers to return containers to the
stores. Other retailers are working collaboratively in organizations such as the
Sustainable Packaging Coalition to find solutions to packaging. However, this work
is threatened to be overwhelmed by the growth in e-commerce and subsequent
increase in cardboard boxes and shipping material. It is estimated that the 165
billion packages shipped in the USA every year use about 1 billion trees worth
of cardboard, not even considering the plastic waste (Peters 2018).

Sustainable innovation can also drive more resilient supply chains. Since retailers
operate global supply chains, they are intrinsically invested in the stability of the
supply of materials and components that go into their products. Recent natural
disasters, like Japan’s major earthquake in 2011 and political disruptions like
Indonesia’s aggression toward Vietnamese fishermen, underscore the volatility of
those product supply chains and spur companies to improve supply chain resiliency.
Retailers are innovating to improve the resiliency of their supply chains by

• simplifying supply chains so that raw materials, components, and finished
products have shorter transportation journeys;

• using more abundant and natural raw materials as input to products;
• from politically stable countries;
• moving production closer to the point of consumption.

New Business Models They are a critical form of sustainable innovation. Tradi-
tionally, retailers are seen simply as product distribution channels, and generate
profits based almost exclusively on the volume and prices of products they sell.
This definition of retail’s core business model only further acts to perpetuate the
“take, make, and dispose” consumption system. However, with societal changes
such as the Internet and greater access to information, consumers are changing their
lifestyles and consumption patterns. Companies like Zipcar, Airbnb, and Uber have
pioneered rental and sharing models. A trend that retail companies like Rent the
Runway and Bag Borrow or Steal have applied to consumer products. Traditional
retailers are responding with new services like product repair, rental, sharing, and
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take-back that align customers’ interests. These new channels of interaction, such
as AutoZone’s free Loan-A-Tool program, are expanding the business opportunities
for brick-and-mortar stores.

10.5 Taking Action

As described earlier, retailers tend to follow a maturity path as their sustainability
programs grow. This section describes the critical programmatic components for
a strong retail sustainability program and is based on RILA’s Retail Sustainability
Leadership Model (RILA 2017b). The Leadership Model helps to identify pathways
for retailers to implement strong environmental sustainability programs that fit their
operations best. Though the elements presented below illustrate a progression, the
reality is that every company is unique and will therefore take a different approach
to initiating and growing its sustainability program. That is why the progression
described below is only a suggested approach; each company should pick the
elements and timing that make most sense for its culture and unique circumstances.

The first set of actions that a company takes is to focus on strategy and
commitment. This helps a retailer develop the governance structures, strategies,
goals, values, and incentives for a successful program. The strategy will change as
the company’s program matures and typically becomes more valuable as it becomes
more refined.

As with any business function, oversight, accountability, also engaged execu-
tives are essential to the success of a sustainability program. Formal governance
establishes Board oversight, which ensures that the Board understands the com-
pany’s sustainability risks, sets corporate sustainability policy, and is accountable
to implement that policy. As the definition of fiduciary duty evolves, Boards
of Directors are taking responsibility to manage sustainability-related risks and
opportunities. Engaging senior executives also means that companies move beyond
isolated projects toward integration across business functions.

Executive Councils and Functional Councils are typically launched to help
develop and implement sustainability strategy. Sustainability Executive Councils are
one of the most effective ways to engage executives from across the organization.
Retailers tend to have a two-pronged structure to Executive Councils, developing a
(1) senior-most council and a (2) functional-level council.

Senior-most executive councils engage top executives from across the enterprise,
namely the CFO, COO, Division Presidents, EVPs, and SVPs from critical functions
like HR, Legal, Merchandising, and Private Brands. Their role is to ensure program
alignment with business strategies and secure approvals for the company’s approach
to sustainability. Because of the seniority of these councils, they are likely to meet
only three to four times a year. Functional councils consist of Directors, VPs, and
SVPs who represent functional roles like Logistics, HR, and Store Operations. They
are typically divided into working groups to drive progress on specific sustainability
objectives and meet every 1–2 months.
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With executive councils in place, the company can select a chief sustainability
officer (CSO) to lead the councils and oversee strategy and execution. In the most
mature programs, the CSO reports directly to the CEO, and together they partner
to demonstrate the business relevance of sustainability program to investors and
other stakeholders and communicate the support of the company. Retailers, brands,
and others in the retailing supply chain, like 3M, Coca-Cola, General Mills, FedEx,
IKEA, Kellogg, L’Oréal, Mars, Spectrum Brands, Tiffany’s, Tyson Foods, Unilever,
UPS, Walmart, and West Marine, have senior-level CSOs that are influential in their
organizations (The Weinreb Group 2014).

Strategy is a critical step in building an effective sustainability program. Sustain-
ability will only be seriously considered in business planning if its strategy aligns
across departments and with the overall corporate strategy. The best programs go
a step further and incorporate internationally recognized standards into the orga-
nization’s overall long-term strategy, often using a triple bottom line approach for
reviewing future strategies and corporate projects. For the strategy to be successful,
the CEO must be a champion of the company’s sustainability agenda, and regularly
incorporate sustainability strategy in its meetings and corporate communications.

Companies perform materiality assessments to identify the issues that are critical
to their business and to outside stakeholders. Materiality is a term of art in corporate
finance but is increasingly used in the sustainability discipline. GRI, an organization
that promotes the use of common sustainability reporting standards, defines material
aspects as “those that reflect the organization’s significant economic, environmental
and social impacts; or that substantively influence the assessments and decisions
of stakeholders” (GRI 2013). The best materiality assessments require quantitative
analysis, qualitative assessment and discussion, involve individual departments
(e.g., sourcing, operations) for their input and review, and use the same processes
to review both sustainability risks and opportunities, and corporate risks and
opportunities. For example, Walgreens Boots Alliance describes their materiality
process in this way: “As part of our CSR materiality assessment process we mapped
out potential material topics as well as issues raised by stakeholders. We considered
the relevance of each topic to internal and external stakeholders, and the relevance
of each topic to the Company. We also consider wider societal expectations and our
influence on customers and suppliers to determine priority topics.

“Through the mapping, and as a result of the inputs described above, we
confirmed that the issues most relevant to us are reflected in our 12 goals, which
are grouped in four focus areas where we can have the most impact: Community,
Environment, Marketplace and Workplace” (Walgreens Boots Alliance 2018).

Goal-setting is also a common step in developing a sustainability program.
Goals help define the corporate-wide vision, drive action and alignment, and signal
the company’s commitment to sustainability with critical partners (e.g., suppliers,
customers, investors) and the areas of most interest. Retailers set both short-
and long-term sustainability goals, commonly beginning with a focus on facility
operations, then reaching into their product lifecycles, and eventually into their
consumer marketing and messaging. The leading goals are absolute reduction goals
that address material issues. The best goals incorporate the global and local context
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of environmental conditions. For example, science-based targets, which are based
on the reduction of GHG emissions needed to keep global temperatures below 2 ◦C
or the UN SDGs. Some quantitatively link profit goals with sustainability goals or
aim for zero impact. Companies like Delhaize, Eileen Fisher, Kroger, Nike, REI,
and Walmart have set “big, hairy, audacious goals” for zero impact in at least one
area of their operations.

Peter Drucker said that “culture eats strategy for breakfast.” This sums up why it
is critical that the sustainability program’s strategy aligns with the corporate culture,
or put another way, the company’s culture must reinforce its sustainability vision.
The corporate values and/or mission should mention the importance of sustainability
to the business, and that ethos needs to be reinforced in all major internal corporate
communications, meetings, and events. Senior executives must regularly refer to the
corporate values in terms of a sustainability and responsibility to set the tone for the
corporate culture.

Gap’s CEO Art Peck connects the company’s corporate values with sustainabil-
ity, “When Doris and Don Fisher opened the first Gap store in San Francisco in 1969,
they did not expect to transform retail. They just Could not find a pair of good jeans
that fit. From that single store to today’s global business, Gap Inc. is synonymous
with equality, community and laid-back American style. Good business—the kind
that puts people at its center—has the potential to change the world, no matter
how small it starts. At Gap Inc., we still sell good jeans, and we still believe in
good business. We are also part of a world that has changed a lot since 1969.
Today, customers expect more from a product. They want to know the story behind
it. Where did it come from? Who made it? Was it created in a fair, safe and
environmentally responsible way? What was the impact on people and the planet?
We owe it to our customers to ask ourselves those same questions. Some of the
answers have brought us back to our core values, and some have compelled us to
find new solutions and build new partnerships” (Gap Inc 2018b).

Related to culture are incentives, which define success for individuals and
corporate departments by encouraging desired behaviors. Financial incentives are
the most common; for example, companies can link executive compensation to
sustainability performance. Leading retailers also invest in incentives to influence
positive employee behaviors by providing benefits like charging stations for electric
vehicles or bikes for employees to use.

Once the company’s house is in order, it can focus on executing its sustainability
strategy. This entails engaging external stakeholders, partnering with the internal HR
and communications teams, building funding mechanisms, and creating business
innovation mechanisms.

Relevant stakeholders have influence on, or are influenced by, the enterprise.
For retail, the major stakeholders are their customers, investors, activists, and
the media. Retailers should identify the most relevant stakeholder groups and
the most relevant KPIs for the business and their sustainability strategy. Then
establish communication methods for each stakeholder group, finding ways to both
provide updates and incorporate feedback from key stakeholders into the company’s
sustainability strategy.
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In addition to external stakeholders, there is a critical internal stakeholder:
employees. To reach them, sustainability programs must partner with HR and com-
munications teams. With HR, sustainability teams can provide a collaborative forum
for high-initiative employees to receive recognition for their sustainability efforts
while sharing best practices with colleagues. They can also develop employee
orientation and ongoing training programs. Leading programs also regularly educate
employees on the company’s sustainability vision and business case to underscore
relevance to their daily work. They also hold highly visible senior leadership
meetings on sustainability where store employees, sourcing, merchants, logistics,
and other staff are recognized. And finally, they train in-store employees to educate
customers about the company’s sustainability efforts.

The success of a business program often hinges on the investment of resources,
most specifically funding. Some retailers provide a budget to key retail functions
specifically earmarked for sustainability projects in those departments (e.g., dis-
tribution, sourcing, merchandising, store operations). Corporations with mature
sustainability programs typically require that all corporate funding requests include
sustainability metrics and increase the investment on sustainability-related programs
over time.

As the retail industry evolves, so too must sustainability programs, making
innovation a critical component of a strong program. Leading retailers have
dedicated teams to create and invest in sustainable innovations, build an innovation
fund to invest in new retail business models that promote sustainability, and
leverage the Chief Innovation Officer’s ability to place sustainability and continuous
improvement into corporate innovation goals.

As with any business discipline, sustainability needs clear metrics to commu-
nicate priorities and measure success. Sustainability metrics should be focused on
all material aspects of the business, including innovation, linking people and planet
with profit and stakeholder concerns, and should be chosen from global frameworks.
Metrics need to be tracked for the most relevant regions of the global business using
automated measurement tools and IT systems.

While sustainability programs are valuable in their own right, their value is
amplified when the company’s goals and commitments, activities, and results are
communicated to relevant stakeholders. In retail, this storytelling is done in several
ways. The first is through reporting, with a best practice of using third-party
standards (e.g., GRI), independent auditing, communicating via multiple channels
like websites, product marketing and labeling, and advertising. Leaders go a step
further, integrating their sustainability and financial reports, called “integrated
reporting,” and thereby telling a single, 360-degree story about their business.

Point-of-purchase consumer education channels are another opportunity for
storytelling. Retailers can devote significant in-store signage or sections to products
with advanced sustainability benefits, develop dedicated online storefronts to
encourage consumers to select products with sustainability benefits, and engage
consumers in other ways about products with sustainability benefits (e.g., catalogs,
web filters, icons, online calculators, and product stories).
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Since marketing campaigns are one of the most visible ways that retail brands
interact with consumers, retailers should dedicate a sustainability-focused marketer
within the marketing team, with a significant budget devoted for sustainability-
related marketing and incorporate marketing effectiveness metrics into the ROI for
that dedicated budget. Retailers can also create branded campaigns with themes
that resonate with consumers. This ensures that the campaign is more than just one
touchpoint that fizzles out. Retail companies can take a stand or have a clear position
on certain issues (e.g., climate change, consumption) and connect their corporate
sustainability stories to these issues.

Recognizing that an individual company cannot tackle the systemic issues of
sustainability alone, most leading retailers join collaborative groups to increase their
effectiveness. Leading retailers are premier members of one or more industry associ-
ations or multi-lateral groups focused on relevant sustainability issues; they partner
with NGOs, governments, academia, or other institutions to identify improvement
opportunities; and they take a leadership role in developing new tools or capabilities
that will enable peers to improve their sustainability and supply chain sustainability
performance.

Performing these steps, in the order appropriate for any specific retail enterprise,
lays the foundation for a strong and self-perpetuating retail sustainability program.
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